MARC details
000 -LEADER |
fixed length control field |
05192 a2200385 4500 |
001 - CONTROL NUMBER |
control field |
200425247 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908000934.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
161109s2016 tu 000 0 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Transcribing agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE END YL’17 SÖN |
100 ## - MAIN ENTRY--PERSONAL NAME |
Personal name |
Sönmez, Nezahat |
9 (RLIN) |
118477 |
245 10 - TITLE STATEMENT |
Title |
Trafik sensör verileri kullanılarak trafik akış tahmini: İstanbul şehri için bir uygulama = Predicting the traffic flow with using traffic sensors: An application for Istanbul / |
Statement of responsibility, etc. |
Nezahat Sönmez. |
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara: |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2017. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xiv 63 pages : |
Other physical details |
color maps, charts, graphics, illustrations (some color) ; |
Dimensions |
30 cm. |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2017 |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc. note |
|
520 ## - SUMMARY, ETC. |
Summary, etc. |
Ulaşımın insan yaşamındaki yeri her geçen gün artmakta ve toplumun neredeyse yarısı gününün yaklaşık bir saatini yolda geçirmektedir [1]. Türkiye İstatistik kurumunun açıklamasına göre 2016 Ocak ayı itibari ile İstanbul'da trafiğe kayıtlı motorlu kara taşıtlarının sayısı '3 651 166' gibi bir rakama ulaşmıştır. Trafik akışı üzerine tahminler yapmak, trafik işletme verimliliğini artırmak, trafiğe çıkacak kişilere gidilecek yolu seçmesi konusunda bilgi vermek gibi sebeplerle çalışılmaya başlanmış ve akıllı ulaşım sistemlerinin bir uygulaması olarak oldukça ilgi çekmiştir [2]. İstanbul şehrinde de dünyanın birçok şehrinde olduğu gibi trafik müdürlükleri tarafından gerçek zamanlı trafik verileri çeşitli algılayıcılardan elde edilerek toplanmaktadır. Şeritlerde bulunan araç sayısı, yön bazlı akış hızı, işgaliye miktarı ve şeritlerin hızı gibi değişkenler evrensel bazlı tipik veri seti değişkenleridir [3]. Çalışmada kullanılacak olan veri seti IBB Trafik Mü dü rlü ğü'nden bilimsel çalışma yapmak amacı ile dilekçe yolu ile alınmış olup, İstanbul şehrinin oldukça sıkışık yolları üzerinde yoğunlaşan uzun bir rota izlemektedir. ARIMA ve Derin Çok Katmanlı Algılayıcılar bu çalışmada trafiği modellemek için kullanılmıştır. Veri seti eğitim ve test seti olarak iki parçaya ayrılmıştır. Eğitim seti modeli eğitmek, test ise eğitilen modeli test etmek amacıyla kullanılmıştır. Test set üzerinde yapılan tahminler Çok Katmanlı Algılayıcıların bu veri seti için, ARIMA modellerine göre çok daha doğru tahminler yaptığı gözlemlenmiştir. Derin öğrenme modelleri, karmaşık sorunları çözme becerileri ile ünlüdür. Model olarak Çok Katmanlı Algılayıcı'yı seçtikten sonra, çalışmanın amacı, sadece o modelle birlikte trafik akışını tahmin etmek olmuştur.<br/><br/><br/>The place of transportation in human life is increasing day by day, and almost half of the society is spending one hour in traffic everyday [1]. According to Statistical Institute of Turkey, the number of motorized road vehicles registered in traffic in Istanbul reaches a number such as '3 651 166'. It has been tried to make estimations on traffic flow, to increase the efficiency of traffic operation, to give information about the way to go to traffic, and has attracted considerable attention as an application of intelligent transport systems [2]. Real time traffic data is collected from various sensors by the traffic directorates in Istanbul, as it is in many cities of the world. Variations such as the number of vehicles in the lines, the direction-based flow rate, the amount of occupation and the speed of the lines are typical universal data set variables [3]. The data set to be used in the study is taken from the IBB Traffic Directorate by means of a petition and an intention to carry out a scientific study and it follows a long route which focuses on the rather cramped roads of the city of Istanbul. The models which used to modelling traffic are ARIMA and Deep Multilayer Perceptron (DMLP). Data set separated in to parts as training and test sets to train and test models. The estimates on test set showed that DMLP is much more accurate than ARIMA for this data. DMLP is one of the deep learning algorithms. Deep learning models are famous with their ability to solve complex problems. After choosing DMLP as model, the aim of the study become predicting the traffic flow just with that model. In the study, it is determined which factors influenced the traffic flow by using artificial neural networks trained and then estimating the traffic flow of future periods.<br/> |
650 00 - SUBJECT ADDED ENTRY--TOPICAL TERM |
9 (RLIN) |
32546 |
Topical term or geographic name entry element |
Tezler, Akademik |
|
Topical term or geographic name entry element |
Dissertations, Academic |
9 (RLIN) |
32543 |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Çok katmanlı algılayıcılar |
|
Uncontrolled term |
ARIMA |
|
Uncontrolled term |
Trafik akışı modelleme |
|
Uncontrolled term |
Multilayer perceptrons |
|
Uncontrolled term |
ARIMA |
|
Uncontrolled term |
Traffic flow modelling |
710 #2 - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="https://tez.yok.gov.tr/">https://tez.yok.gov.tr/</a> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |