Derin sinir ağ tabanlı dosya ve veri parçası sınıflandırılması / (Record no. 200434938)

MARC details
000 -LEADER
fixed length control field 06978nam a2200409 i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230908000940.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2018 xxu e mmmm 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’18 ERO
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Erozan, Ayşe Sıddıka
9 (RLIN) 123490
245 10 - TITLE STATEMENT
Title Derin sinir ağ tabanlı dosya ve veri parçası sınıflandırılması /
Statement of responsibility, etc. Ayşe Sıddıka Erozan.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2018.
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 52 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type code txt
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type code n
Media type term unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type code nc
Carrier type term volume
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Temmuz 2018
520 ## - SUMMARY, ETC.
Summary, etc. Bu çalışmada sunulan araştırma, adli bilişim ve bilgi güvenliği uygulamalarında hayati önem taşıyan dosya ve veri türü sınıflandırmasına yönelik bir çözüm önermektedir. Son on beş yılda dosya ve veri türü sınıflandırması araştırmalarında kullanılan yöntemler, dosya uzantısı tabanlı yöntemler, sihirli bayt tabanlı yöntemler ve içerik tabanlı yöntemlerdir. Bu yöntemlerden uzantı tabanlı ve sihirli bayt tabanlı yöntemler, dosya başlığında yer alan sihirli baytlar ve dosya uzantıları kolayca değiştirilebildiğinden dolayı yetersiz yöntemlerdir. İçerik tabanlı yöntemler sihirli bayt ve dosya uzantıları gibi değişikliklere karşı dirençli olduğundan son yıllarda bu alanda yapılan çalışmalar hızlı bir şekilde artmıştır. İçerik tabanlı yöntemlerin kullanıldığı çalışmaların çoğunda çok az sayıda dosya ve veri türü kullanılmaktadır. Bu alanda yapılan çok az sayıda çalışmada ise çok sayıda dosya ve veri türü kullanılmaktadır. Ancak bu çalışmalardaki dosyaların bazıları işletim sistemlerinde çok az kullanılan dosya türleridir. Bu çalışmada en çok kullanılan 15 dosya ve veri türünü içeren içerik tabanlı dosya ve veri parçası sınıflandırma yöntemi sunulmuştur. Sınıflandırma alanında son yıllarda derin sinir ağları yaygın bir şekilde kullanılmaya başlanmıştır. Kullanılan sınıflar eğitim setinde yeterince iyi genellediğinde çok iyi sınıflandırma performansı elde edilmektedir. Bu çalışmada da dosya ve veri sınıflandırması problemine derin sinir ağ mimarileri kullanılarak çözüm aranmaktadır. Önerilen yöntemde iki seviyeli hiyerarşik model kullanılmakta olup bu hiyerarşik sınıflandırma sisteminde ilk seviyede birkaç alternatif sınıflandırma modeline dayanan deneyler yapılmıştır. Alternatif sınıflandırma modelleri entropi bazlı dört farklı durum ve sınıflandırma bazlı üç farklı algoritma kullanılmaktadır. İkinci seviyede ise kazanan model üzerinden derin sinir ağları kullanılmıştır. İşletim sistemlerinde kullanılan en küçük küme birim büyüklüğü olan 4 kilobayt ve 8 kilobaytlık dosya ve veri parçaları kullanılarak 2-gram analizi ile öznitelikler çıkartılmaktadır. Çıkarılan bu öznitelikler üç farklı makine öğrenmesi algoritması kullanılarak entropiye dayalı olarak gruplara ayrılmaktadır. Daha sonra bu ayrılan gruplar üzerinden dosya ve veriler derin sinir ağlar kullanılarak tür tabanlı sınıflandırma yapılmakladır. 4 kilobayt ve 8 kilobayt için sınıflandırma doğruluk oranları sırasıyla %92,80 ve %94,67’dir. Yapılan bu çalışmada doğruluk oranını önemli ölçüde azaltan şifrelenmiş veri türü olan aes256 kullanılmasına rağmen benzer dosya türü kullanılarak yapılan en iyi çözüm ile karşılaştırıldığında bizim önerdiğimiz yöntem doğruluk oranını %6,87 oranında artırdığı görülmektedir.
Summary, etc. The research presented in this paper provides a solution for file and data type classification which is crucial digital forensics and information security applications. Over the past fifteen years, the existing methods for file and data type classification are file extension based methods, magic byte based methods and content based methods for file and data type classification. Extension based and magic byte based methods are impotent methods since file extension and magic bytes which is in the file header can be easily changed. Since content-based methods are resistant to changes in magic bytes and file extensions, content-based methods have been frequently investigated in the recent years. Majority of existing studies, where content based methods are used, classify very few file and data types. Only few works classify large number of file and data types. However, these works do not cover the most used file and data types in the well-known operating systems. In this paper, a content based file and data fragment classification method which covers the most used 15 files and data type is presented. In the classification applications, deep neural networks has been widely used in recent years, and great classification results is obtained when the used classes are sufficiently good in the training set. Therefore the proposed method uses deep neural networks for file and data type classification. The proposed method classifies 15 file and data types by using two level hierarchical model. In this hierarchical classification system, empirical test based on several alternative classification models are performed in the first level. It is used three classification algorithm and entropy based four different cases. In the second level hierarchy, deep neural networks are used on the winning model. 2-gram features are extracted using 4 kilobytes and 8 kilobytes of files and data fragments, which are the smallest cluster sizes used in operating systems. These extracted features are divided into classes based on entropy using three different machine learning algorithms. In the second level, these specified classes are classified to 15 classes by using deep neural networks. The results show that the classification accuracies for 4 kilobytes and 8 kilobytes are 92.80% and 94.67% respectively. Therefore, the proposed method improves the accuracy by 6.87% than the relevant state of the art while it also includes encrypted data type (aes256) which dramatically decreases the classification accuracy since the encryption changes the file content randomly.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Tezler, Akademik
Source of heading or term etuturkob
9 (RLIN) 32546
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Dosya ve veri parçası
Uncontrolled term İçerik tabanlı yöntemler
Uncontrolled term Derin sinir ağlar
Uncontrolled term 2-gram
Uncontrolled term Adli bilişim
Uncontrolled term File and data fragment
Uncontrolled term Content-based
Uncontrolled term Deep neural network
Uncontrolled term Digital forensics
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://tez.yok.gov.tr/">https://tez.yok.gov.tr/</a>
Materials specified Ulusal Tez Merkezi
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Yeni / New Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 16/01/2019 Bağış / Donation   TEZ TOBB FBE BİL YL’18 ERO TZ00921 16/01/2019 1 16/01/2019 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.