MARC details
000 -LEADER |
fixed length control field |
04817nam a2200505 i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908000945.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2019 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200437106 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE END YL’19 DOĞ |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Doğan, Hazal Berve |
Relator term |
author |
9 (RLIN) |
126588 |
245 10 - TITLE STATEMENT |
Title |
Beklenmedik uçak yönlendirmelerini azaltma : |
Remainder of title |
Zaman serisi analizi ve yapay sinir ağları ile modelleme / |
Statement of responsibility, etc. |
Hazal Berve Doğan ; thesis advisor Tahir Hanalioğlu. |
246 11 - VARYING FORM OF TITLE |
Title proper/short title |
Reduce unexpected airline diverts: modelling with time series analysis and neural network |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2019. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xv, 69 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type code |
txt |
Content type term |
text |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type code |
n |
Media type term |
unmediated |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type code |
nc |
Carrier type term |
volume |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Temmuz 2019 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Bu çalışmada, bir havayolu şirketinin beklenmeyen yönlendirmelerinin sebep oldu-ğu maliyetlerin en aza indirgenmesi amacı ile bir karar destek sistemi tasarlanmış-tır. Söz konusu havayolu şirketi tarafından temin edilen meteorolojik veriler ışığın-da R programlama dili kullanılarak, görüş mesafesini öngörmek amacı ile yapılan analizlerin sonuçları sunulmuştur. Verilerin zaman serisi analiz yöntemleri kullanı-larak incelenmesi ile öngörülerde bulunmak amaçlanmıştır. İleriye dönük 3 saate karşılık gelecek şekilde ayrıntılı değerlendirme gerçekleştirilmiştir. Zaman serisi analizlerinden AR, MA, ARMA, ARIMA, AutoARIMA ve VAR kullanılarak elde edilen sonuçlar, hata oranı fonksiyonlarına göre karşılaştırılmıştır. Çalışmanın ikinci bölümünde, MATLAB programlama dili kullanılarak yapay sinir ağları oluşturul-muş, bu yöntem ile elde edilen meteorolojik verilerin tahminleri, zaman serisi ana-lizi sonuçları ile karşılaştırılmıştır. Sistemsel olarak iyileştirme, yönlendirilen uçuş-lara ait kararların doğruluğu ile ölçülmüştür. Ölçümler, karışıklık matrisine işlen-miştir. |
|
Summary, etc. |
In this study, a decision support system is designed in order to minimize the number of flights that are diverted unexpectedly. The aim is to reduce the expenses that arise when the aircraft is not able to land on the targeted airport due to the unfavorable weather conditions, such as rescheduling the timetable, overuse of aircraft fuel than planned, passengers' accommodation and ticket reissue. In order to reduce such temporal and financial losses caused by diverted flights, decision to take off or not is made before departure, while the decision to land or not is made during flight, after a brief analysis based on weather data of target airport. For the aircraft to land on target airport as scheduled, it is crucial that the weather forecasts for visibility range, ceiling and wind speed are within the limits of the safe flight requirements. Considering the significance of this decision regarding by finance, there is a need for a decision support system that is capable of boosting the process through optimal decision-making by forecasting airport weather conditions. In the first part of the study, weather is forecast using regression and time series analysis, of which methods can be detailed as auto regressive (AR), moving average (MA), auto regressive integrated moving average (ARIMA) and vector auto regressive (VAR). Although such forecast methods are relatively effective in achieving the desired result, neural network and fuzzy logic techniques are expected to present more accurate forecast with their complicated and advanced algorithm structure. In the second part of the study, neural networks are created with using MATLAB. The results which is obtained with these methods are compared time series analysis results. Improvement is measured by accuracy of the decisions of diverted flights. The measurements are recorded on the confusion matrix. |
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Tezler, Akademik |
9 (RLIN) |
32546 |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Havacılık |
|
Uncontrolled term |
Uçak Yönlendirme |
|
Uncontrolled term |
Hava Tahmini |
|
Uncontrolled term |
Zaman Serileri |
|
Uncontrolled term |
Karar Destek Sistemi |
|
Uncontrolled term |
Tekrarlayan Yapay Sinir Ağları (TSA) |
|
Uncontrolled term |
LSTM |
|
Uncontrolled term |
Divert |
|
Uncontrolled term |
Weather Forecast |
|
Uncontrolled term |
Regression |
|
Uncontrolled term |
Time Series |
|
Uncontrolled term |
Decision Support System |
|
Uncontrolled term |
Neural Network |
|
Uncontrolled term |
RNN |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Khaniyev, Tahir |
Relator term |
advisor |
9 (RLIN) |
118494 |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="https://tez.yok.gov.tr/">https://tez.yok.gov.tr/</a> |
Materials specified |
Ulusal Tez Merkezi |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |