Toplu öğrenme ile ilaç kombinasyonlarının sinerji skor tahmini / (Record no. 200438776)

MARC details
000 -LEADER
fixed length control field 05258nam a2200505 i 4500
001 - CONTROL NUMBER
control field 200438776
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250701133703.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2018 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200438776
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’20 EKŞ
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Ekşioğlu, Işıksu
Relator term author
9 (RLIN) 128579
245 10 - TITLE STATEMENT
Title Toplu öğrenme ile ilaç kombinasyonlarının sinerji skor tahmini /
Statement of responsibility, etc. Işıksu Ekşioğlu ; thesis advisor Mehmet Tan.
246 11 - VARYING FORM OF TITLE
Title proper/short title Prediction of drug combinations' synergy score by ensemble learning
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2020.
300 ## - PHYSICAL DESCRIPTION
Extent xvi, 63 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type code txt
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type code n
Media type term unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type code nc
Carrier type term volume
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2020
520 ## - SUMMARY, ETC.
Summary, etc. Kanser gibi ortaya çıkış sebebi birden fazla genetik ve çevresel nedene bağlı olan kompleks hastalıkların tedavisinde son zamanlarda en çok tercih edilen yöntem; birden fazla ilacın birarada kullanıldığı politerapi (kombinasyonel terapi) yöntemidir. Eğer bir ilaç kombinasyonunun, herhangi bir hastalığa sahip hücre hattına olan etkisi, kombinasyondaki ilaçların tek başına uygulanmasıyla elde edilen etkilerin toplamından fazlaysa, bu ilaç kombinasyonuna sinerjik ilaç kombinasyonu denir. Son zamanlarda bu alanda yapılan çalışmalarda, yapay öğrenme yöntemlerinin sinerjik ilaç kombinasyonlarını belirlemede zaman,kaynak kullanımı vs. gibi birçok açıdan verimlilik sağladıkları gözlemlenmştir. Bu tez çalışması iki bölümden oluşmaktadır. İlk bölümde farklı ilaç gösterimleriyle oluşturduğumuz veri kümelerinin, ilaç kombinasyonlarının sinerjilerinin derecelerini gösteren sinerji skorlarının tahminine olan etkileri incelendi. Kullandığımız ilaç gösterimlerinden bazıları sinerji skoru tahmini için ilk defa kullanılan verilerdir. Bu aşamada oluşturduğumuz veri kümeleri ile yapay öğrenme modellerinden elde edilen tahminler birleştirilerek kapsamlı bir onkoloji veri kümesindeki sinerji skorlarının tahmini için literatürdeki en iyi sonuçlar elde edildi. İkinci bülümde, ilaç-kanserli hücre hattı ikilileri için bir yapay öğrenme modelinin tahmin ettiği sinerji skorlarını en iyileyecek ikinci ilaçlar (moleküller) oluşturulmaya çalışıldı. Bu amaç için varyasyonel oto kodlayıcı ve gradyan çıkış yapay öğrenme yöntemlerinden yararlanıldı. Bu çalışmanın sonucunda en iyilenen sinerji skoruna yakın skorlar veren moleküllere, belirli bir oranın üzerinde benzeyen moleküllerin oluşturulduğu gözlemlendi.
Summary, etc. Recently, the most preferred method in the treatment of complex diseases such as cancer, the origin of which is due to more than one genetic and environmental causes, is polytherapy (combination therapy). It is a method of where more than one drug is used together. If the effect of a drug combination on the cell line with any disease is greater than the sum of the effects achieved by applying the drugs in the combination alone, this drug combination is called a synergistic drug combination. In recent studies in this field, It has been observed that machine learning methods provide efficiency for determining synergistic drug combinations in many aspects such as time, resources, etc. This thesis consists of two parts. In the first part, the effects of data sets that we created with different drug representations on the estimation of synergy scores which show the degree of synergism of drug combinations were examined. Some of the drug representations used for the first time for synergy score estimation. The best results in the literature were obtained for the estimation of synergy scores in a comprehensive oncology dataset by combining machine learning predictions' for these datasets. In the second part, we tried to create second drugs (molecules) for drug-cancer cell line pairs that would optimize synergy scores predicted by an artificial learning model. For this purpose, variational autocoder and gradient ascent methods were used. As a result of this study, it has been observed that, machine learning methods can create molecules that are similar with the molecules that give scores close to the synergy scores that are optimized.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Tezler, Akademik
9 (RLIN) 32546
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Çizge sinir ağı
Uncontrolled term Oto-kodlayıcı
Uncontrolled term Makine öğrenmesi
Uncontrolled term Derin öğrenme
Uncontrolled term İlaç kombinasyonları sinerji skoru tahmini
Uncontrolled term Molekül tasarımı
Uncontrolled term Öznitelik önem analizi
Uncontrolled term Graph neural network
Uncontrolled term Autoencoder
Uncontrolled term Machine learning
Uncontrolled term Deep learning
Uncontrolled term Drug combinations’ synergy scores prediction
Uncontrolled term Molecule generation
Uncontrolled term Feature importance analysis
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Tan, Mehmet
Relator term advisor
9 (RLIN) 78808
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Other/Generic Classification Scheme
Koha item type Thesis
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 12/10/2020 Bağış / Donation   TEZ TOBB FBE BİL YL’20 EKŞ TZ01138 12/10/2020 1 12/11/2020 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.