MARC details
000 -LEADER |
fixed length control field |
05258nam a2200505 i 4500 |
001 - CONTROL NUMBER |
control field |
200438776 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250701133703.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2018 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200438776 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE BİL YL’20 EKŞ |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Ekşioğlu, Işıksu |
Relator term |
author |
9 (RLIN) |
128579 |
245 10 - TITLE STATEMENT |
Title |
Toplu öğrenme ile ilaç kombinasyonlarının sinerji skor tahmini / |
Statement of responsibility, etc. |
Işıksu Ekşioğlu ; thesis advisor Mehmet Tan. |
246 11 - VARYING FORM OF TITLE |
Title proper/short title |
Prediction of drug combinations' synergy score by ensemble learning |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2020. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xvi, 63 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type code |
txt |
Content type term |
text |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type code |
n |
Media type term |
unmediated |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type code |
nc |
Carrier type term |
volume |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2020 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Kanser gibi ortaya çıkış sebebi birden fazla genetik ve çevresel nedene bağlı olan kompleks hastalıkların tedavisinde son zamanlarda en çok tercih edilen yöntem; birden fazla ilacın birarada kullanıldığı politerapi (kombinasyonel terapi) yöntemidir. Eğer bir ilaç kombinasyonunun, herhangi bir hastalığa sahip hücre hattına olan etkisi, kombinasyondaki ilaçların tek başına uygulanmasıyla elde edilen etkilerin toplamından fazlaysa, bu ilaç kombinasyonuna sinerjik ilaç kombinasyonu denir. Son zamanlarda bu alanda yapılan çalışmalarda, yapay öğrenme yöntemlerinin sinerjik ilaç kombinasyonlarını belirlemede zaman,kaynak kullanımı vs. gibi birçok açıdan verimlilik sağladıkları gözlemlenmştir. Bu tez çalışması iki bölümden oluşmaktadır. İlk bölümde farklı ilaç gösterimleriyle oluşturduğumuz veri kümelerinin, ilaç kombinasyonlarının sinerjilerinin derecelerini gösteren sinerji skorlarının tahminine olan etkileri incelendi. Kullandığımız ilaç gösterimlerinden bazıları sinerji skoru tahmini için ilk defa kullanılan verilerdir. Bu aşamada oluşturduğumuz veri kümeleri ile yapay öğrenme modellerinden elde edilen tahminler birleştirilerek kapsamlı bir onkoloji veri kümesindeki sinerji skorlarının tahmini için literatürdeki en iyi sonuçlar elde edildi. İkinci bülümde, ilaç-kanserli hücre hattı ikilileri için bir yapay öğrenme modelinin tahmin ettiği sinerji skorlarını en iyileyecek ikinci ilaçlar (moleküller) oluşturulmaya çalışıldı. Bu amaç için varyasyonel oto kodlayıcı ve gradyan çıkış yapay öğrenme yöntemlerinden yararlanıldı. Bu çalışmanın sonucunda en iyilenen sinerji skoruna yakın skorlar veren moleküllere, belirli bir oranın üzerinde benzeyen moleküllerin oluşturulduğu gözlemlendi. |
|
Summary, etc. |
Recently, the most preferred method in the treatment of complex diseases such as cancer, the origin of which is due to more than one genetic and environmental causes, is polytherapy (combination therapy). It is a method of where more than one drug is used together. If the effect of a drug combination on the cell line with any disease is greater than the sum of the effects achieved by applying the drugs in the combination alone, this drug combination is called a synergistic drug combination. In recent studies in this field, It has been observed that machine learning methods provide efficiency for determining synergistic drug combinations in many aspects such as time, resources, etc. This thesis consists of two parts. In the first part, the effects of data sets that we created with different drug representations on the estimation of synergy scores which show the degree of synergism of drug combinations were examined. Some of the drug representations used for the first time for synergy score estimation. The best results in the literature were obtained for the estimation of synergy scores in a comprehensive oncology dataset by combining machine learning predictions' for these datasets. In the second part, we tried to create second drugs (molecules) for drug-cancer cell line pairs that would optimize synergy scores predicted by an artificial learning model. For this purpose, variational autocoder and gradient ascent methods were used. As a result of this study, it has been observed that, machine learning methods can create molecules that are similar with the molecules that give scores close to the synergy scores that are optimized. |
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Tezler, Akademik |
9 (RLIN) |
32546 |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Çizge sinir ağı |
|
Uncontrolled term |
Oto-kodlayıcı |
|
Uncontrolled term |
Makine öğrenmesi |
|
Uncontrolled term |
Derin öğrenme |
|
Uncontrolled term |
İlaç kombinasyonları sinerji skoru tahmini |
|
Uncontrolled term |
Molekül tasarımı |
|
Uncontrolled term |
Öznitelik önem analizi |
|
Uncontrolled term |
Graph neural network |
|
Uncontrolled term |
Autoencoder |
|
Uncontrolled term |
Machine learning |
|
Uncontrolled term |
Deep learning |
|
Uncontrolled term |
Drug combinations’ synergy scores prediction |
|
Uncontrolled term |
Molecule generation |
|
Uncontrolled term |
Feature importance analysis |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Tan, Mehmet |
Relator term |
advisor |
9 (RLIN) |
78808 |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |
Koha item type |
Thesis |