Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi / (Record no. 200439788)

MARC details
000 -LEADER
fixed length control field 03717nam a2200385 i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230908000952.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2020 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200439788
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’20 SAL
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Salman, Oğuzhan
Relator term author
9 (RLIN) 129470
245 10 - TITLE STATEMENT
Title Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi /
Statement of responsibility, etc. Oğuzhan Salman ; thesis advisor Ali Aydın Selçuk.
246 11 - VARYING FORM OF TITLE
Title proper/short title Analysis and evaluation of keystroke dynamics as a feature of contextual authentication
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2020.
300 ## - PHYSICAL DESCRIPTION
Extent x, 50 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type code txt
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type code n
Media type term unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type code nc
Carrier type term volume
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Aralık 2020
520 ## - SUMMARY, ETC.
Summary, etc. Tuş Vuruş Dinamikleri, kullanıcının kimliğinin doğruluğuna karar vermek için bireylerin tuş vuruş davranışlarını incelememize yardımcı olan bir davranışsal-biyometri çözümüdür; ancak, bu yaklaşımın dezavantajı, nispeten yüksek yanlış negatif ve yüksek yanlış pozitif oranlara sahip olmasıdır. Bu çalışmada, farklı anomali tespit yaklaşımlarını karşılaştırıyor ve bu çözümleri birleştirdiğimizde performans gelişmelerini inceliyoruz. Önce tuş vuruşu dinamikleri ve oturum bağlamı anomali bileşenlerini ayrı ayrı oluşturduk. Ardından, bu makine öğrenimi bileşenlerinin sonuçlarının nasıl birleştirileceğini inceledik. Deneylerimiz, bu bileşenlerden ağırlıklı ortalama topluluk modelini oluşturmak performansı artırırken, yeni bir özellik olarak oturum bağlam anomali bileşenine tuş vuruşu dinamikleri puanlarını dahil etmek sadece tuş vuruşu dinamiği puanlarını değil, aynı zamanda bu puanlar arasında değişimleri de gözlemleyebildiği için daha iyi performans sağladığını gözlemledik.
Summary, etc. Keystroke Dynamics is a behavioural-biometrics solution that helps us to examine individuals' keystroke behaviour to decide legitimacy of the user; however, the drawback of this approach is that it has relatively high false negative and high false positive rates. There are some other anomaly detection approaches which examine more static properties like user's contextual details such as IP address, screensize, browser type etc. to detect legitimacy of the user but these approaches also suffer from false alerts. In this study, we compare different anomaly detection approaches and observe performance improvements when we combine these solutions. We first built keystroke dynamics and session context anomaly components, separately. Then, we examined how to combine the results of these machine learning components. Our experiments showed that while using weighted average ensemble model from these components improved performance, another approach which was to include keystroke dynamics scores in session context anomaly component as a new feature gives the opportunity to capture not only the keystroke dynamics scores but also the deviations of these scores and thus yields better performance<br/>
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Davranışsal biyometri
Uncontrolled term Yapay zeka
Uncontrolled term Anomali deteksiyonu
Uncontrolled term Behavioural biometrics
Uncontrolled term Machine learning
Uncontrolled term Anomaly detection
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Selçuk, Ali Aydın
9 (RLIN) 126357
Relator term advisor
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 02/03/2021 Bağış / Donation   TEZ TOBB FBE BİL YL’20 SAL TZ01197 02/03/2021 1 10/03/2021 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.