MARC details
000 -LEADER |
fixed length control field |
03717nam a2200385 i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908000952.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2020 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200439788 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE BİL YL’20 SAL |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Salman, Oğuzhan |
Relator term |
author |
9 (RLIN) |
129470 |
245 10 - TITLE STATEMENT |
Title |
Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi / |
Statement of responsibility, etc. |
Oğuzhan Salman ; thesis advisor Ali Aydın Selçuk. |
246 11 - VARYING FORM OF TITLE |
Title proper/short title |
Analysis and evaluation of keystroke dynamics as a feature of contextual authentication |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2020. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
x, 50 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type code |
txt |
Content type term |
text |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type code |
n |
Media type term |
unmediated |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type code |
nc |
Carrier type term |
volume |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Aralık 2020 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Tuş Vuruş Dinamikleri, kullanıcının kimliğinin doğruluğuna karar vermek için bireylerin tuş vuruş davranışlarını incelememize yardımcı olan bir davranışsal-biyometri çözümüdür; ancak, bu yaklaşımın dezavantajı, nispeten yüksek yanlış negatif ve yüksek yanlış pozitif oranlara sahip olmasıdır. Bu çalışmada, farklı anomali tespit yaklaşımlarını karşılaştırıyor ve bu çözümleri birleştirdiğimizde performans gelişmelerini inceliyoruz. Önce tuş vuruşu dinamikleri ve oturum bağlamı anomali bileşenlerini ayrı ayrı oluşturduk. Ardından, bu makine öğrenimi bileşenlerinin sonuçlarının nasıl birleştirileceğini inceledik. Deneylerimiz, bu bileşenlerden ağırlıklı ortalama topluluk modelini oluşturmak performansı artırırken, yeni bir özellik olarak oturum bağlam anomali bileşenine tuş vuruşu dinamikleri puanlarını dahil etmek sadece tuş vuruşu dinamiği puanlarını değil, aynı zamanda bu puanlar arasında değişimleri de gözlemleyebildiği için daha iyi performans sağladığını gözlemledik. |
|
Summary, etc. |
Keystroke Dynamics is a behavioural-biometrics solution that helps us to examine individuals' keystroke behaviour to decide legitimacy of the user; however, the drawback of this approach is that it has relatively high false negative and high false positive rates. There are some other anomaly detection approaches which examine more static properties like user's contextual details such as IP address, screensize, browser type etc. to detect legitimacy of the user but these approaches also suffer from false alerts. In this study, we compare different anomaly detection approaches and observe performance improvements when we combine these solutions. We first built keystroke dynamics and session context anomaly components, separately. Then, we examined how to combine the results of these machine learning components. Our experiments showed that while using weighted average ensemble model from these components improved performance, another approach which was to include keystroke dynamics scores in session context anomaly component as a new feature gives the opportunity to capture not only the keystroke dynamics scores but also the deviations of these scores and thus yields better performance<br/> |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Davranışsal biyometri |
|
Uncontrolled term |
Yapay zeka |
|
Uncontrolled term |
Anomali deteksiyonu |
|
Uncontrolled term |
Behavioural biometrics |
|
Uncontrolled term |
Machine learning |
|
Uncontrolled term |
Anomaly detection |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Selçuk, Ali Aydın |
9 (RLIN) |
126357 |
Relator term |
advisor |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |