MARC details
000 -LEADER |
fixed length control field |
05263nam a2200445 i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908000952.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2020 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200439871 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE BİL YL’20 TOR |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Torusdağ, Muhammet Buğra |
Relator term |
author |
9 (RLIN) |
129521 |
245 10 - TITLE STATEMENT |
Title |
Makine öğrenmesi tabanlı twıtter sosyal bot tespit sistemlerinin performanslarının değerlendirilmesi / |
Statement of responsibility, etc. |
Muhammet Buğra Torusdağ; thesis advisor Ali Aydın Selçuk. |
246 11 - VARYING FORM OF TITLE |
Title proper/short title |
Evaluation of machine learning based twitter social bot detection systems |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2020. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xiv, 53 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type code |
txt |
Content type term |
text |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type code |
n |
Media type term |
unmediated |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type code |
nc |
Carrier type term |
volume |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Aralık 2020 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Twitter gibi sosyal medya platformları insanların rahat bir şekilde iletişim kurabilmesi için oldukça etkili mecralardır. Bu platformlar hayatı kolaylaştırmak adına birçok avantaj sağlamasına rağmen, insanların kandırılması, yanlış bilgi yayılarak insanların yanlış yönlendirilmesi, manipüle edilmesi ve sözlü taciz gibi birçok soruna da neden olmaktadır.. Özellikle sosyal botlar, bahsedilen zararlı içeriklerin hızlı bir şekilde yayılması ve daha görünür hale gelebilmesi adına sürekli olarak içerek paylaşarak bu aktivitelerin gerçekleştirilmesini daha kolay bir hale getirmektedir. Bu durumu engelleyebilmek adına sosyal bot tespit sistemleri geliştirilmiştir. Buna rağmen, geliştirilen sistemlerin performansları, veri setlerinin sınırlı sayıda ve türde bot hesap bulundurmasından dolayı tam doğru bir şekilde değerlendirilememektedir. Bundan dolayı, bu tezde yapılan çalışmalarda bot tespit sistemlerinin performanslarının doğru bir şekilde değerlendirilebilmesi ve sosyal bot tespiti probleminin çözülüp çözülemediği araştırılmaktadır. Yapılan deneyler ile, 4 farklı bot tespit sisteminin performansları farklı deney düzenekleri üzerinde karşılaştırılarak en yüksek performansa sahip model bulunmaya çalışılmıştır. Kullanılan modellerin orijinal çalışmalarında raporlanan skorların çok yüksek olduğu görülmesine rağmen, modeller farklı test setlerinde düşük performanslar göstermişlerdir. Buna rağmen, performansı en yüksek olan modelin Botometer olduğu anlaşıldığından, Botometer'ın performansının daha detaylı incelenmesi gereksinimi ortaya çıkmıştır. Farklı bir bakış açısıyla deneyler gerçekleştirilerek Botometer'ın performansı 5 farklı bot senaryosu kullanılarak değerlendirilmiştir. Bu deneyler sonucunda, Botometer'ın yalnızca 1 senaryo dışında tüm senaryolarda kötü performans sergilediği görüldüğünden, sosyal bot tespiti probleminin hala araştırılmaya açık bir problem olduğunu anlaşılmaktadır. |
|
Summary, etc. |
Social media platforms such as Twitter, provide an incredibly effective way to communicate with people. While these platforms have many benefits, they can also be used for deceiving people, spreading misinformation, manipulation and verbal harassment. Social bots are usually employed for these kind of activities to artificially increase the amount of a particular post. To mitigate the effects of social bots, many bot detection systems are developed. However, the evaluation of these methods are challenging due to lack limited available datasets and the variety of bots people might develop. Therefore, in this thesis, it has been investigated whether the performance of bot detection systems can be accurately evaluated and the social bot detection problem is solved. The experiments carried out, the performances of 4 different bot detection systems are compared on different experimental setups to find which model has the highest performance. Although it was observed that the scores in the original studies where the models were very high, the models showed poor performance in different test sets. However, since it is understood that the model with the highest performance is the Botometer, a more detailed examination of the performance of the Botometer should be done. Experiments were carried out with a different perspective and the performance of the Botometer is evaluated using 5 different bot scenarios. As a result of these experiments, Botometer shows low performance in all scenarios except one and the problem of social bot detection is still an open problem to investigate. |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Twitter |
|
Uncontrolled term |
Makine öğrenmesi |
|
Uncontrolled term |
Sosyal bot tespiti |
|
Uncontrolled term |
Performans değerlendirme |
|
Uncontrolled term |
Botometer |
|
Uncontrolled term |
Bot senaryoları |
|
Uncontrolled term |
Machine learning |
|
Uncontrolled term |
Social bot detection |
|
Uncontrolled term |
Evaluation |
|
Uncontrolled term |
Botometer |
|
Uncontrolled term |
Bot scenarios |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Selçuk, Ali Aydın |
9 (RLIN) |
126357 |
Relator term |
advisor |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |