Çizge sinir ağları ve derin takviyeli öğrenme kullanarak otomatik molekül üretimi / (Record no. 200448899)

MARC details
000 -LEADER
fixed length control field 06805nam a2200421 i 4500
001 - CONTROL NUMBER
control field 200448899
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250701133703.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2022 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200448899
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’22 IŞI
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Işık, Rıza
Relator term author
9 (RLIN) 137136
245 10 - TITLE STATEMENT
Title Çizge sinir ağları ve derin takviyeli öğrenme kullanarak otomatik molekül üretimi /
Statement of responsibility, etc. Rıza Işık; thesis advisor Mehmet Tan.
246 ## - VARYING FORM OF TITLE
Title proper/short title Automated molecule generatıon usıng graph neural networks and deep reınforcement learnıng
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent xv, 43 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2022
520 ## - SUMMARY, ETC.
Summary, etc. Belirli istenen özelliklere sahip moleküler yapılar inşa etme fikri, ilaç keşfi ve malzeme bilimindeki birkaç büyük problemin temelini oluşturur. Fakat, kimyasal uzay o kadar geniştir ki, günümüzde mevcut olan hesaplama kaynakları ile bu alanın tamamını araştırmak imkansızdır. Bu nedenle, yeni bir ilaç bulmak hem zaman hem de maddi açıdan çok maliyetli olabilir. Neyse ki, son yıllarda artan veri ile birlikte bilgisayar donanımı ve yazılımındaki gelişmeler, doğal dil işlemeden bilgisayarla görüye uzanan alanları etkileyen derin yapay sinir ağlarında bir devrime yol açmıştır. Derin öğrenme, moleküler özelliklerin tahmini ve optimizasyonu için yeni yolların tasarımı da dahil olmak üzere, ilaç keşfindeki bir dizi alanı etkilemiştir. Derin öğrenmedeki bu gelişmeler ve ilaç üretimi için kullanılabilecek büyük veri tabanlarının artışı sayesinde son yıllarda umut verici sonuçlar alınmıştır. Bu tez çalışmasında, istenen belirli özellikler için yeni moleküller üretebilen bir model geliştirilmiştir. Bu model temelde iki farklı modelin birleşiminden oluşmaktadır. İlk model, moleküllerin üretilmesini gerçekleştiren bir Derin Takviyeli Öğrenme mimarisine sahiptir. Diğer model ise Derin Takviyeli Öğrenme mimarisine sahip modelin eğitiminde kullanılan moleküler temsilleri üreten bir Çizge Sinir Ağı'dır. Bu Çizge Sinir Ağı modeli için de iki farklı mimari kullanılmıştır. Bu mimarilerden ilki, Çizge Evrişimsel Ağı, diğeri ise Çizge Dikkat Ağı'dır. Geliştirilen modeli kullanarak temelde beş ayrı iş için molekül optimizasyonu ve üretimi gerçekleştirilmiştir. Bu işler, QED değerinin optimizasyonu, benzerlik kısıtlaması ile cezalı LogP değerinin optimizasyonu, benzerlik kısıtlaması ile QED değerinin optimizasyonu, belirlenen hedef protein alıcıları (F2, PPAR, JAK2) için kenetlenme skorunun optimize edilmesi ve kenetlenme skorunun optimize edildiği işteki eğitilen model kullanılarak rastgele başlangıç moleküllerinin optimize edilmesi şeklindedir. Önerilen bu modeli kıyaslamak için literatürde benzer görevlerde en iyi sonuçları almış bir model olan MolDQN, temel yöntem olarak tercih edilmiştir. Kıyaslamak için kullanılan bu model aynı Derin Takviyeli Öğrenme mimarisine sahiptir ancak eğitilirken molekül temsili olarak Morgan Parmak İzi'ni kullanmaktadır. Yapılan deneylerin sonuçları, Çizge Sinir Ağı mimarisini kullanarak üretilen moleküllerin, Morgan Parmak İzi yöntemi kullanılarak üretilen moleküllerden belirgin düzeyde daha başarılı olduğunu göstermiştir.<br/>
Summary, etc. The idea of building molecular structures with certain desirable properties underlies several major problems in drug discovery and materials science. However, the chemical space is so vast that it is impossible to explore the entire space with the available computational resources today. Therefore, finding a new drug can be very costly in terms of time and money. Fortunately, advances in computer hardware and software, combined with increasing data in recent years, have led to a revolution in deep neural networks affecting areas ranging from natural language processing to computer vision. Deep learning has influenced several fields in drug discovery, including the design of new pathways for the prediction and optimization of molecular properties. Due to these developments in deep learning and the increase in large databases that can be used for molecule generation, encouraging results have been obtained in recent years. In this thesis, a model that can generate new molecules for certain desired properties has been developed. This model consists of a combination of two different models. The first model has a Deep Reinforcement Learning architecture that handles the generation of molecules. The other model is a Graph Neural Network that generates molecular representations used in training the Deep Reinforcement Learning architecture. Two different architectures are used for this Graph Neural Network model. The first of these architectures is the Graph Convolutional Network and the other is the Graph Attention Network. By using the proposed model, molecule optimization and generation were carried out for basically five different jobs. These tasks include optimization of the QED value, optimization of the penalized LogP value with similarity constraint, optimization of the QED value with similarity constraint, optimization of the docking score for the desired target protein receptors (F2, PPAR, JAK2), and optimization of the random starting molecules using the trained model in the previous task for which the docking score is optimized. To compare this proposed model, MolDQN, a model with the best results in similar tasks in the literature, was preferred as the baseline method. This baseline method has the same Deep Reinforcement Learning architecture but uses the Morgan Fingerprint as the molecule representation while being trained. The results of the conducted experiments show that the molecules generated using the Graph Neural Network architecture were significantly more successful than the molecules generated using the Morgan Fingerprint method.
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Çizge sinir ağları
Uncontrolled term Derin takviyeli öğrenme
Uncontrolled term Hesaplamalı molekül tasarımı
Uncontrolled term Moleküler toksisite
Uncontrolled term Computational molecule design
Uncontrolled term Deep reinforcement learning
Uncontrolled term Graph neural networks
Uncontrolled term Molecular toxicity
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Tan, Mehmet
Relator term advisor
9 (RLIN) 78808
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 27/05/2022 Bağış / Donation   TEZ TOBB FBE BİL YL’22 IŞI TZ01381 27/05/2022 1 25/07/2022 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.