Derin öğrenme ile çizge zaman serilerinin analizi / (Record no. 200448911)

MARC details
000 -LEADER
fixed length control field 06872nam a2200457 i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230908001001.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2022 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200448911
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’22 KES
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Keskin, Mustafa Mert
Relator term author
9 (RLIN) 137172
245 10 - TITLE STATEMENT
Title Derin öğrenme ile çizge zaman serilerinin analizi /
Statement of responsibility, etc. Mustafa Mert Keskin; thesis advisor Ahmet Murat Özbayoğlu.
246 ## - VARYING FORM OF TITLE
Title proper/short title Analysis of graph time series with deep learning
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent xxiii, 105 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2022
520 ## - SUMMARY, ETC.
Summary, etc. Zaman serileri bir nesnenin zamansal değişimini anlamak için kullanılır. Finans, enerji sektörü, trafik gibi çeşitli alanlarda zaman serileri ile karşılaşılmaktadır. Ayrıca anomali tespiti, davranış tanıma gibi birçok problem, zaman serisi problemi olarak modellenebilir. Bu yüzden gerçek hayatta sıkça karşılaşılan zaman serilerinin analizi büyük öneme sahiptir. Dolayısıyla, zaman serisi problemleri yaygın bir şekilde araştırılmakta ve çözülmeye çalışılmaktadır. Çizgeler ise nesneler arası ilişkileri analiz etmek için kullanılır. Bazı zor problemler, problem verisi çizge olarak analiz edildiği zaman daha iyi anlaşılabilir. Bu yüzden çizge problemleri de literatürde önemli bir yer sahiptir. Zaman serileri ve çizgeler problemin farklı yönlerini anlama imkânı sunarlar. Bu yüzden, literatürde zaman serilerini çizgeler ile birleştirerek daha iyi modelleme yapan çalışmalar mevcuttur. Bu yöntem finans alanında bazı çalışmalarda uygulanmaktadır. Bu tez çalışmasında, finansal tahmin problemi için derin öğrenme yöntemleri ile çizge serisi analizi yapılmıştır. Bunun için öncelikle DOW 30 borsası bir çizge olarak temsil edilmiştir. Sonrasında farklı zaman anlarındaki çizgeler sıralanarak çizge serisi oluşturulmuştur. Elde edilen seri ile yapay sinir ağı eğitilerek hisselerin değişim miktarı tahmini yapılmıştır. Tahmin edilen değişim miktarına göre ana paradan günlük al/sat stratejisi uygulanarak yatırım yapılmıştır. Bunun sonucunda yıllık getiri yüzde olarak hesaplanmıştır. Araştırma sonucunda, sadece zaman serisi kullanılarak geliştirilen derin öğrenme modellerine kıyasla daha yüksek ortalama yıllık getiri kazanılmış olup çizge serisi kullanmanın finansal tahmini ciddi ölçüde iyileştirdiği bir başka deyişle zaman serisi ile yakalanamayacak çıkarımların yapılabildiği sonucuna varılmıştır. Tez çalışmasında, birden çok yöntemle çizge serisi oluşturulmuştur. Farklı çizgelerle eğitilen derin öğrenme modelleri ile benzer ortalama yıllık getiri elde edilmiştir. Böylece, çizge serisi elde etme yönteminin güçlü (robust) ve kararlı (stable) bir yöntem olduğu gösterilmiştir. Ayrıca eğitilen derin öğrenme modellerinin çıktılarından en çok artan hisse tahminin yapan bir kolektif model eğitilmiştir. Nihai model ile ortalama yıllık %26,68 kazanç elde edilmiştir. Bu yöntemin literatürdeki temel yöntemlerin yanı sıra çeşitli açgözlü (greedy) algoritmadan da daha yüksek getiri sağladığı gösterilmiştir. Sonuç olarak geliştirilen kolektif model, gerçek hayatta günlük al/sat stratejisi için kullanılabilecek bir yöntem olarak önerilmiştir.
Summary, etc. Time series are used to understand the temporal variation of an object. Time series are encountered in various fields such as finance, energy and traffic. Moreover, many problems such as anomaly detection, behavior recognition can be modeled as time series problems. Therefore, the analysis of time series which are frequently encountered in real life is of great importance and time series problems are widely researched and tried to be solved. Graphs are used to analyze the relationships between objects. Some difficult problems can be better understood when the problem data is analyzed as graphs. Hence, graph problems have an important place in the literature. Time series and graphs provide an opportunity to understand different aspects of the problem. Therefore, there are studies in the literature that make better modeling by combining time series and graphs. This method is applied in some studies in the field of finance. In this thesis, graph series analysis was performed with deep learning methods for financial forecasting problems. For this purpose, DOW 30 stock market is represented as a graph. Then, graphs at different timestamps were ordered and graph series was formed. The amount of change in the shares was predicted by training artificial neural networks with obtained series. According to the predicted amount of change, the principal was invested by applying a daily buy/sell strategy. As a result of this, the annual return was calculated as a percentage. As a result of the study, higher average annual returns were obtained compared to deep learning models using only time series and it was concluded that using graph series significantly improved financial forecasting, in other words, inferences that could not be captured with time series could be made. In the thesis study, graph series was created with multiple methods. A similar average annual return was obtained with deep learning models trained with different graphs. Thus, it has been shown that the method of obtaining a series of graphs is a robust and stable method. In addition, an ensemble model that predicts the stock that increases the most from the outputs of the trained deep learning models is trained. An average annual return of 26.68 % was achieved with the final model. It has been shown this method provides more profit than various greedy algorithms in the literature as well as the basic methods in the literature. As a result, the developed ensemble model is proposed as a method that can be used for daily buy/sell strategy in real life.
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Zaman serisi
Uncontrolled term Çizme teori
Uncontrolled term Yapay öğrenme
Uncontrolled term Yapay sinir ağları
Uncontrolled term Derin öğrenme
Uncontrolled term Kolektif öğrenme
Uncontrolled term Time series
Uncontrolled term Graph theory
Uncontrolled term Machine learning
Uncontrolled term Artifical neural network
Uncontrolled term Deep learning
Uncontrolled term Ensemble learning
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Özbayoğlu, A. Murat
9 (RLIN) 125250
Relator term advisor
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 30/05/2022 Bağış / Donation   TEZ TOBB FBE BİL YL’22 KES TZ01377 30/05/2022 1 30/05/2022 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.