Kimyasalların gen düzenleyici etkilerinin tahmini için transfer öğrenimi / (Record no. 200449089)

MARC details
000 -LEADER
fixed length control field 04866nam a2200397 i 4500
001 - CONTROL NUMBER
control field 200449089
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250701133703.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2022 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200449089
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BİL YL’22 MAR
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Maral, Bahattin Can
Relator term author
9 (RLIN) 137480
245 10 - TITLE STATEMENT
Title Kimyasalların gen düzenleyici etkilerinin tahmini için transfer öğrenimi /
Statement of responsibility, etc. Bahattin Can Maral; thesis advisor Mehmet Tan.
246 13 - VARYING FORM OF TITLE
Title proper/short title Transfer learning for predicting gene regulatory effects of chemicals
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent xii, 43 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2022
520 ## - SUMMARY, ETC.
Summary, etc. Kemogenomik, ilaç tasarımına ve taramaya yardımcı olmak amacıyla biyolojik hedeflerin kimyasal bileşiklere genomik ve/veya proteomik reaksiyonunun incelenmesidir. Kemogenomikteki birçok zorluktan biri, gerçek yaşam deney verilerine bağımlılıktan kaynaklanmaktadır; farklı kimyasal bileşiklerin ve ilaç hedeflerinin kombinasyonu, gerçekçi olmayan sayıda olası deney yaratır ve bu da belirli kimyasallara ve hedeflere yönelik önyargılı veri kümeleriyle sonuçlanmaktadır. Yapay öğrenmedeki son gelişmeler, bu veri kümelerinin sınırlarını kolayca zorlayan güçlü modellerin aşırı doygunluğuyla sonuçlanmıştır. Bu yatkınlıkların etkilerini nötrlemek için, benzer problemlerden bilgi edinme yöntemi olan transfer öğrenmeyi kullanmaktayız. Kemogenomik veri setlerindeki en önemli yanlılık, ilaç hedeflerine yönelik olandır. Bazı hücre dizilerinin erişebilirliği ve önemi, bu deneyler için bir ilaç hedefi olarak kullanılma şansını büyük ölçüde artırırken, diğerlerinin yapay öğrenme modellerini eğitmek için ancak yeterli verisi vardır. Derin Bileşik Profil Oluşturucu (DeepCOP) üzerinde yapılan çalışmayı temel olarak kullanırken, transfer öğreniminin, çeşitli ilaç hedeflerinin eğitilebilirliğini büyük ölçüde artırdığını deneysel olarak göstermekteyiz. Deneyler için kullanılan model yapısı değiştirilmemiştir. DeepCOP'da kullanılan veri bölme yöntemine ek olarak iki yöntem daha eklenmiştir. \newpage Deneylerimiz transfer öğrenmenin basit yöntemlerinden biri olan parametre tabanlı transfer öğrenimine odaklanırken, ROC eğrisi altında kalan alan puanlarında \%22,81'e varan ve ortalama \%9,00 iyileşme göstermiştir; bununla birlikte hiperparametre optimizasyonu uygulandığı ve transfer kaynağı olarak doğru hücre hattı seçildiğinde bu iyileşmelerin arttırılabileceğine yönelik potansiyel göstermiştir.
Summary, etc. Chemogenomics is the study of the genomic and/or proteomic reaction of biological targets to chemical compounds, with the goal of aiding drug design and screening. One of the many difficulties in chemogenomics comes from the dependency on real-life experiment data; the combination of different chemical compounds and drug targets creates an unrealistic number of possible experiments, which results in datasets that are biased towards certain chemicals and targets. The recent developments in machine learning resulted in an over-saturation of powerful models that easily pushed the limits of these datasets. To undo the effects of these biases, we employ transfer learning, the method of leveraging knowledge from similar problems. The most important bias of chemogenomics datasets is the bias towards drug targets. The availability and significance of certain cell lines greatly increase the chance of it being used as a drug target for these experiments, while others have barely enough data to train machine learning models. We experimentally demonstrate that transfer learning greatly increases the trainability of various drug targets, while using the work done on the Deep Compound Profiler (DeepCOP) as a basis. While focused on one of the simple methods of transfer learning, our experiments showed up to 22.81\% and an average of 9.00\% improvement on the area under ROC curve scores and showed great potential to be improved upon if accompanied by hyperparameter optimization and correct cell line as the transfer source.
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Transfer öğrenimi
Uncontrolled term Kemogenomik
Uncontrolled term Alan uyarlaması
Uncontrolled term Transfer learning
Uncontrolled term Chemogenomics
Uncontrolled term Domain adaptation
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Tan, Mehmet
Relator term advisor
9 (RLIN) 78808
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 21/06/2022 Bağış / Donation   TEZ TOBB FBE BİL YL’22 MAR TZ01402 21/06/2022 1 25/07/2022 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.