MARC details
000 -LEADER |
fixed length control field |
04950nam a2200433 i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908001004.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2022 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200450629 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE MAK YL’22 ÇEL |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Çelik, Berk Barış |
Relator term |
author |
9 (RLIN) |
139298 |
245 10 - TITLE STATEMENT |
Title |
Koşullu çekişmeli üretken ağ kullanarak dengesiz veriler ile tornalama işlemlerinde tırlama tespiti / |
Statement of responsibility, etc. |
Berk Barış Çelik; thesis advisor Hakkı Özgür Ünver. |
246 13 - VARYING FORM OF TITLE |
Title proper/short title |
Intellıgent chatter detectıon ın turnıng operatıons wıth ımbalanced data usıng condıtıonal generatıve adversarıal networks |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2022. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xviii, 75 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
unmediated |
Media type code |
n |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
volume |
Carrier type code |
nc |
Source |
rdacarrier |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ağustos 2022 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Tornalama, tarihteki en eski ve günümüzde de en sık kullanılan talaşlı imalat yöntemlerinden biridir. Tırlama kesici takım ve iş parçası arasındaki kuvvetler sebebiyle oluşan istenmeyen bir titreşim türüdür. Talaşlı imalatta karşılaşılan ve tezgâhlar için en yıkıcı titreşim türü olan tırlama titreşimleri, iş parçasına, kesici takıma ve tezgâhlara zarar verebilmektedir. Tornalamada akıllı veriye dayalı tırlama tespit yöntemlerindeki son gelişmelere rağmen, çoğu çalışmada farklı sınıf koşulları için dengeli eğitim veri setleri olduğu varsayılmaktadır. Bununla birlikte, tırlama görülen sinyallerin toplanması genellikle zor ve pahalıdır, bu durum dengesiz eğitim veri setlerine sebep olmaktadır. Bu tez kapsamında gerçek eğitim verilerine ek olarak dengesiz veri setlerindeki veri dengesizliğini gidermek için derin öğrenmeye dayalı bir tırlama tespit yöntemi önerilmektedir. Veri setlerindeki başta tırlama verisi olmak üzere veri eksikliğini gidermek amacı ile tırlama tespiti çalışmalarında ilk kez bir boyutlu koşullu çekişmeli üretken ağlar kullanılmıştır. Tornalama verileri kolayca sisteme entegre edilebilen bir sensör yardımı ile yapılmıştır. Deneyler kapsamında toplanan verilerdeki gürültü etkilerini gidermek için tırlama tespit çalışmaları kapsamında ilk defa CEEMDAN sinyal ayrıştırma algoritması kullanılmıştır. Farklı senaryolar halinde üretilen sentetik verilerin güvenilirliğini araştırılmıştır. Sonuçlar ışında üretilen sentetik verilerin ve CEEMDAN algoritmasının tırlama tespitine olan katkıları ortaya konulmuştur. |
|
Summary, etc. |
Turning is one of the oldest and most frequently used machining methods in history. Chatter is an undesirable type of vibration caused by the forces between the cutting tool and the work piece. Chatter vibrations, which are the most destructive vibration type for machines, can damage the work piece, cutting tool and machines during the machining process. Despite recent advances in smart data-driven chatter detection methods in turning, most studies assume balanced training datasets for different class conditions. However, chatter signals are often difficult and expensive to collect, resulting in unstable training datasets. In this thesis, in addition to real training data, a deep learning-based chatter detection method is proposed to eliminate data imbalance problems. For the first time, one-dimensional conditional generative adversarial networks are used in chatter detection in order to eliminate the lack of data in the datasets, especially the chatter data. Turning data is obtained with the help of a sensor that can be easily integrated into the system. The CEEMDAN decomposition algorithm is used for the first time within the scope of chatter detection studies in order to eliminate the noise effects in the data collected within the scope of the experiments. The reliability of synthetic data produced in different scenarios is investigated. In the light of the results, the contributions of the synthetic data and the CEEMDAN algorithm to the detection of chatter are presented. |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Kendini yenileyen tırlama |
|
Uncontrolled term |
Tornalama |
|
Uncontrolled term |
Derin öğrenme |
|
Uncontrolled term |
Koşullu çekişmeli üretken ağlar |
|
Uncontrolled term |
Uyarlanabilir gürültü ile tamamlanmış toplu ampirik mod ayrıştırma |
|
Uncontrolled term |
Regenerative chatter |
|
Uncontrolled term |
Turning |
|
Uncontrolled term |
Deep learning |
|
Uncontrolled term |
Conditional generative adversarial network |
|
Uncontrolled term |
Complete ensemble empirical mode decomposition with adaptive noise |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Ünver, Hakkı Özgür |
9 (RLIN) |
128655 |
Relator term |
advisor |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |