Koşullu çekişmeli üretken ağ kullanarak dengesiz veriler ile tornalama işlemlerinde tırlama tespiti / (Record no. 200450629)

MARC details
000 -LEADER
fixed length control field 04950nam a2200433 i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230908001004.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2022 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200450629
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE MAK YL’22 ÇEL
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Çelik, Berk Barış
Relator term author
9 (RLIN) 139298
245 10 - TITLE STATEMENT
Title Koşullu çekişmeli üretken ağ kullanarak dengesiz veriler ile tornalama işlemlerinde tırlama tespiti /
Statement of responsibility, etc. Berk Barış Çelik; thesis advisor Hakkı Özgür Ünver.
246 13 - VARYING FORM OF TITLE
Title proper/short title Intellıgent chatter detectıon ın turnıng operatıons wıth ımbalanced data usıng condıtıonal generatıve adversarıal networks
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent xviii, 75 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ağustos 2022
520 ## - SUMMARY, ETC.
Summary, etc. Tornalama, tarihteki en eski ve günümüzde de en sık kullanılan talaşlı imalat yöntemlerinden biridir. Tırlama kesici takım ve iş parçası arasındaki kuvvetler sebebiyle oluşan istenmeyen bir titreşim türüdür. Talaşlı imalatta karşılaşılan ve tezgâhlar için en yıkıcı titreşim türü olan tırlama titreşimleri, iş parçasına, kesici takıma ve tezgâhlara zarar verebilmektedir. Tornalamada akıllı veriye dayalı tırlama tespit yöntemlerindeki son gelişmelere rağmen, çoğu çalışmada farklı sınıf koşulları için dengeli eğitim veri setleri olduğu varsayılmaktadır. Bununla birlikte, tırlama görülen sinyallerin toplanması genellikle zor ve pahalıdır, bu durum dengesiz eğitim veri setlerine sebep olmaktadır. Bu tez kapsamında gerçek eğitim verilerine ek olarak dengesiz veri setlerindeki veri dengesizliğini gidermek için derin öğrenmeye dayalı bir tırlama tespit yöntemi önerilmektedir. Veri setlerindeki başta tırlama verisi olmak üzere veri eksikliğini gidermek amacı ile tırlama tespiti çalışmalarında ilk kez bir boyutlu koşullu çekişmeli üretken ağlar kullanılmıştır. Tornalama verileri kolayca sisteme entegre edilebilen bir sensör yardımı ile yapılmıştır. Deneyler kapsamında toplanan verilerdeki gürültü etkilerini gidermek için tırlama tespit çalışmaları kapsamında ilk defa CEEMDAN sinyal ayrıştırma algoritması kullanılmıştır. Farklı senaryolar halinde üretilen sentetik verilerin güvenilirliğini araştırılmıştır. Sonuçlar ışında üretilen sentetik verilerin ve CEEMDAN algoritmasının tırlama tespitine olan katkıları ortaya konulmuştur.
Summary, etc. Turning is one of the oldest and most frequently used machining methods in history. Chatter is an undesirable type of vibration caused by the forces between the cutting tool and the work piece. Chatter vibrations, which are the most destructive vibration type for machines, can damage the work piece, cutting tool and machines during the machining process. Despite recent advances in smart data-driven chatter detection methods in turning, most studies assume balanced training datasets for different class conditions. However, chatter signals are often difficult and expensive to collect, resulting in unstable training datasets. In this thesis, in addition to real training data, a deep learning-based chatter detection method is proposed to eliminate data imbalance problems. For the first time, one-dimensional conditional generative adversarial networks are used in chatter detection in order to eliminate the lack of data in the datasets, especially the chatter data. Turning data is obtained with the help of a sensor that can be easily integrated into the system. The CEEMDAN decomposition algorithm is used for the first time within the scope of chatter detection studies in order to eliminate the noise effects in the data collected within the scope of the experiments. The reliability of synthetic data produced in different scenarios is investigated. In the light of the results, the contributions of the synthetic data and the CEEMDAN algorithm to the detection of chatter are presented.
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Kendini yenileyen tırlama
Uncontrolled term Tornalama
Uncontrolled term Derin öğrenme
Uncontrolled term Koşullu çekişmeli üretken ağlar
Uncontrolled term Uyarlanabilir gürültü ile tamamlanmış toplu ampirik mod ayrıştırma
Uncontrolled term Regenerative chatter
Uncontrolled term Turning
Uncontrolled term Deep learning
Uncontrolled term Conditional generative adversarial network
Uncontrolled term Complete ensemble empirical mode decomposition with adaptive noise
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Ünver, Hakkı Özgür
9 (RLIN) 128655
Relator term advisor
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 17/11/2022 Bağış / Donation   TEZ TOBB FBE MAK YL’22 ÇEL TZ01464 17/11/2022 1 17/11/2022 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.