PEM Fuel Cells : (Record no. 200452348)

MARC details
000 -LEADER
fixed length control field 10987cam a22004933i 4500
001 - CONTROL NUMBER
control field 200452348
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230915001320.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230301s2021 xx o a ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128237090
Qualifying information (electronic bk.)
Canceled/invalid ISBN 9780128237083
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC6808939
System control number (Au-PeEL)EBL6808939
System control number (OCoLC)1287137030
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
-- TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title İngilizce
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK2933.P76
Item number P46 2022
090 ## - LOCALLY ASSIGNED LC-TYPE CALL NUMBER (OCLC); LOCAL CALL NUMBER (RLIN)
Classification number (OCLC) (R) ; Classification number, CALL (RLIN) (NR) TK2933.P76
Local cutter number (OCLC) ; Book number/undivided call number, CALL (RLIN) P46 2022EBK
245 10 - TITLE STATEMENT
Title PEM Fuel Cells :
Remainder of title Fundamentals, Advanced Technologies, and Practical Application /
Statement of responsibility, etc. edited by Gurbinder Kaur.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture San Diego :
Name of producer, publisher, distributor, manufacturer Elsevier,
Date of production, publication, distribution, manufacture, or copyright notice 2021.
Date of production, publication, distribution, manufacture, or copyright notice ©2022.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (584 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Front Cover -- PEM Fuel Cells -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editor -- Foreword -- Acknowledgments -- 1 Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications -- 1.1 Introduction -- 1.2 Proton exchange membrane fuel cells -- 1.3 Components of PEM fuel cells -- 1.3.1 Membrane -- 1.3.2 Anode and cathode electrodes -- 1.3.3 Bipolar plates -- 1.3.4 Other components -- 1.4 Practical applications of PEM fuel cells -- 1.4.1 Portable power systems -- 1.4.2 Transportation -- 1.5 Summary -- References -- 2 Proton exchange membrane for microbial fuel cells -- 2.1 Biofuel cells -- 2.2 Microbial fuel cell -- 2.3 Types of ion exchange membrane in microbial fuel cell -- 2.3.1 Anion exchange membrane -- 2.3.2 Bipolar membrane -- 2.3.3 Cation exchange membrane -- 2.4 Essential cation exchange membrane properties and its determination -- 2.4.1 Water uptake -- 2.4.2 Proton conductivity -- 2.4.3 Extra ion transport -- 2.4.4 Ion exchange capacity -- 2.4.5 pH splitting -- 2.4.6 Oxygen intrusion -- 2.4.7 Internal resistance -- 2.4.8 Substrate crossover and biofouling -- 2.5 Polymeric membranes -- 2.5.1 Polymer-polymer composites -- 2.5.2 Metal-based nanopolymer composites -- 2.5.3 Carbon-polymer composites -- 2.6 Salt bridge -- 2.7 Ceramic membranes -- 2.8 Membrane-less microbial fuel cell -- 2.9 Conclusion -- References -- 3 Electrocatalysts: selectivity and utilization -- 3.1 Introduction -- 3.1.1 Electrocatalyst and its uses -- 3.1.2 Types of electrocatalysts -- 3.1.3 Selectivity and utilization -- 3.2 Optimization parameters -- 3.2.1 Shape modification -- 3.2.2 Facet arrangement -- 3.2.3 Ionomer/catalyst interaction -- 3.3 Summary -- References -- 4 Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative -- 4.1 Introduction.
Formatted contents note 4.2 Polymer electrolyte membrane fuel cells -- 4.3 Carbon nanotubes -- 4.4 Researches on permeable exchange membrane fuel cells and carbon nanotubes -- 4.5 Discussion -- 4.6 Other applications -- 4.7 Conclusion -- Acknowledgments -- References -- 5 Gas diffusion layer for proton exchange membrane fuel cells -- 5.1 Introduction -- 5.2 Gas diffusion layer materials -- 5.3 Gas diffusion layer properties -- 5.3.1 Overview -- 5.3.2 Structural properties -- 5.3.2.1 Porosity -- 5.3.2.2 Thickness -- 5.3.2.3 Pore size distribution -- 5.3.3 Transport properties -- 5.3.3.1 Diffusivity -- 5.3.3.2 Permeability -- 5.3.3.3 Wettability -- 5.3.3.4 Thermal properties -- 5.3.3.5 Electrical properties -- 5.3.4 Gas diffusion layer compressibility -- 5.4 Modifications of gas diffusion layers -- 5.4.1 Hydrophobization -- 5.4.2 Microporous layer application on gas diffusion layer substrate -- 5.4.2.1 Effect of microporous layer properties on proton exchange membrane fuel cell performance -- 5.4.3 Structural modifications -- 5.5 Durability of gas diffusion layer -- 5.6 Summary -- References -- 6 Thermodynamics and operating conditions for proton exchange membrane fuel cells -- 6.1 Introduction -- 6.2 Hydrogen higher and lower heating value -- 6.3 Thermodynamics of fuel cells -- 6.4 First law analysis -- 6.5 Second law analysis -- 6.6 Effect of cell conditions of reversible voltage -- 6.6.1 Effect of temperature on reversible voltage -- 6.6.2 Effect of pressure on reversible voltage -- 6.6.3 Effect of reactant concentration on reversible -- 6.7 Efficiency of fuel cells -- 6.7.1 First law efficiency -- 6.7.2 Real fuel cell efficiency -- 6.8 Chapter summary -- References -- 7 Proton exchange membrane testing and diagnostics -- 7.1 General overview -- 7.2 Testing of proton exchange membrane fuel cell -- 7.2.1 Pretesting procedures -- 7.2.1.1 Validation of cell assembly.
Formatted contents note 7.2.1.2 Preparation of the cell -- 7.2.1.2.1 Break-in/start-up -- 7.2.1.2.2 Conditioning -- 7.2.2 Testing techniques and standard protocols -- 7.2.2.1 Performance testing -- 7.2.2.2 Durability testing -- 7.2.3 Posttesting procedures -- 7.2.3.1 Noninvasive diagnostic procedures -- 7.2.3.2 Clean-up of the cell -- 7.2.3.3 Invasive diagnostic procedures -- 7.2.3.4 Verification of the assembly -- 7.2.3.5 Destructive postmortem -- 7.3 Diagnostic tools for proton exchange membrane fuel cell -- 7.3.1 Polarization curve -- 7.3.2 Cyclic voltammetry -- 7.3.3 Electrochemical impedance spectroscopy -- 7.3.4 Current mapping -- 7.3.5 Temperature mapping -- 7.3.6 Cathode discharge -- 7.4 Summary -- References -- 8 Charge and mass transport and modeling principles in proton-exchange membrane (PEM) fuel cells -- 8.1 Introduction -- 8.2 PEM thermodynamics and electrochemistry -- 8.2.1 Electrochemical reaction -- 8.2.2 Gibbs free energy and electrical work -- 8.2.3 Electrical potentials -- 8.2.3.1 Temperature effects -- 8.2.3.2 Pressure effects -- 8.2.3.2.1 Changes due to concentration -- 8.2.4 Tafel equation -- 8.3 Charge and mass transport in membrane-electrode-assembly -- 8.3.1 Charge transport -- 8.3.1.1 Charge flux -- 8.3.1.2 Fuel cell charge transport resistance and voltage losses -- 8.3.1.3 Conductivity -- 8.3.2 Mass transport -- 8.3.2.1 Diffusion -- 8.3.2.2 Advection mass transport -- 8.4 Modeling mass transport in a fuel cell -- 8.4.1 Mathematical models -- 8.4.2 Modeling voltage -- 8.4.3 Numerical solution -- 8.4.3.1 Computational fluid dynamics -- 8.4.3.2 Lattice Boltzmann methods -- 8.5 Closing remarks -- References -- 9 Degradation and failure modes in proton exchange membrane fuel cells -- 9.1 Introduction -- 9.2 Failure modes and degradation -- 9.2.1 Membrane degradation -- 9.2.1.1 Chemical/electrochemical degradation of proton exchange membrane.
Formatted contents note 9.2.2 Mechanical degradation of proton exchange membrane -- 9.2.2.1 Thermal degradation of proton exchange membrane -- 9.2.3 Catalyst degradation -- 9.2.3.1 Pt degradation -- 9.2.3.2 Carbon corrosion -- 9.2.3.3 Ionomer decomposition -- 9.2.4 Degradation of gas diffusion layers -- 9.2.4.1 Chemical degradation of gas diffusion layers -- 9.2.4.2 Mechanical degradation of gas diffusion layers -- 9.2.5 Degradation of bipolar plates -- 9.2.6 Degradation of other components -- 9.3 Stressors in proton exchange membrane fuel cells -- 9.3.1 Open-circuit voltage -- 9.3.2 Start/stop cycling -- 9.3.3 Thermal cycling and freeze/thaw cycling -- 9.3.4 Reactant starvation -- 9.3.5 Fuel impurities -- 9.3.5.1 COx poisoning -- 9.3.5.2 Sulfur poisoning -- 9.3.5.3 Other impurities -- References -- 10 High-temperature proton exchange membrane-an insight -- 10.1 Introduction -- 10.2 HT-PEMFC materials -- 10.2.1 Membrane -- 10.2.2 Catalyst and catalyst layer -- 10.2.3 Bipolar plates -- 10.3 HT-PEMFC stacks and systems -- 10.4 Durability in HT-PEMFC -- 10.5 Degradation mechanisms: materials -- 10.6 Applications of HT-PEMFC -- 10.7 Conclusion -- Acknowledgments -- References -- 11 Advanced modifications in nonnoble materials for proton exchange membrane -- 11.1 Introduction -- 11.2 Role of noble meatal (Pt) catalyst -- 11.3 Alternatives to pure platinum -- 11.3.1 Advances in nonnoble supported Pt catalyst -- 11.3.2 Ordered Pt-noble metal (Pt-M) alloys/metal alloying -- 11.4 Features of nonnoble materials for proton exchange membrane fuel cells -- 11.5 Nonnoble materials for proton exchange membrane fuel cells -- 11.5.1 Transition metal carbides as oxygen reduction reaction catalyst/support -- 11.5.1.1 Advances and modifications in transition metal carbides -- 11.5.2 Modifications in Pt-free nonnoble materials.
Formatted contents note 11.5.3 Advances in nonnoble M-N-C catalysts in the form of metal organic framework precursors -- 11.6 Conclusion -- 11.7 Future perspective -- References -- 12 Technological risks and durability issues for the Proton Exchange Membrane Fuel Cell technology -- 12.1 Introduction -- 12.2 Working of proton exchange membrane fuel cells -- 12.3 Major challenges in proton exchange membrane fuel cells -- 12.4 Sluggish oxygen reduction reaction kinetics -- 12.5 Effect of electrocatalysts and carbon support materials -- 12.6 Durability issues and deterioration mechanism -- 12.6.1 Study on start-up/shut-down cycling -- 12.6.2 Reversal current decay mechanism -- 12.6.3 Fuel starvation -- 12.6.4 Mechanism of carbon corrosion -- 12.6.5 Catalyst dissolution and Ostwald ripening -- 12.6.6 Role of catalyst size in catalyst loss -- 12.6.7 Catalyst detachment/agglomeration -- 12.7 Conclusions -- Acknowledgments -- References -- Further reading -- 13 Porous media flow field for proton exchange membrane fuel cells -- 13.1 Introduction -- 13.2 Structure of porous media flow field -- 13.2.1 Foam material -- 13.2.2 3D fine mesh -- 13.2.3 Others -- 13.3 Material property of porous media flow field -- 13.3.1 Structure reconstruction -- 13.3.2 Permeability and pressure drop -- 13.3.3 Heat transfer -- 13.3.4 Two-phase flow -- 13.3.4.1 Volume-of-fluid model -- 13.3.4.2 Mixture (M2) and two-fluid model -- 13.4 Porous media flow field performance -- 13.4.1 Experiment -- 13.4.2 Simulation -- 13.4.2.1 Foam flow filed -- 13.4.2.2 3D fine mesh flow filed -- 13.4.3 Data-driven surrogate model -- 13.5 Summary -- References -- 14 Automotive applications of PEM technology -- 14.1 Fuel cells (FCs) in transportation applications -- 14.1.1 Transportation application -- 14.1.1.1 Cars -- 14.1.1.2 Buses -- 14.1.1.3 Trucks -- 14.1.1.4 Forklifts -- 14.1.1.5 Train and trams.
Formatted contents note 14.1.1.6 Underwater vehicles.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Proton exchange membrane fuel cells.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books
9 (RLIN) 2032
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Kaur, Gurbinder
Relator term editor
9 (RLIN) 141988
856 40 - ELECTRONIC LOCATION AND ACCESS
Materials specified ScienceDirect
Public note Connect to resource
Uniform Resource Identifier <a href="https://www.sciencedirect.com/book/9780128237083">https://www.sciencedirect.com/book/9780128237083</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type E-Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Cost, replacement price Date shelved Koha item type Public note
    Library of Congress Classification Geçerli değil-e-Kitap / Not applicable-e-Book E-Kitap Koleksiyonu Merkez Kütüphane Merkez Kütüphane 24/02/2023 Satın Alma / Purchase 0.00 ELE/MBN   TK2933.P76 P46 2022EBK EBK01177 24/02/2023 0.00 24/02/2023 E-Book
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.