Electrochemical Power Sources : (Record no. 200452349)

MARC details
000 -LEADER
fixed length control field 11166cam a22005533i 4500
001 - CONTROL NUMBER
control field 200452349
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230915001320.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230301s2021 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128194256
Qualifying information (electronic bk.)
Canceled/invalid ISBN 9780128194249
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC6792355
System control number (Au-PeEL)EBL6792355
System control number (OCoLC)1283846279
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title İngilizce
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TP359.H8
Item number E443 2022
090 ## - LOCALLY ASSIGNED LC-TYPE CALL NUMBER (OCLC); LOCAL CALL NUMBER (RLIN)
Classification number (OCLC) (R) ; Classification number, CALL (RLIN) (NR) TP359.H8
Local cutter number (OCLC) ; Book number/undivided call number, CALL (RLIN) E443 2022EBK
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Smolinka, Tom.
245 10 - TITLE STATEMENT
Title Electrochemical Power Sources :
Remainder of title Hydrogen Production by Water Electrolysis.
Statement of responsibility, etc. edited by Tom Smolinka, Jurgen Garche
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture San Diego :
Name of producer, publisher, distributor, manufacturer Elsevier,
Date of production, publication, distribution, manufacture, or copyright notice 2021.
Date of production, publication, distribution, manufacture, or copyright notice ©2022
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (512 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - The importance of water electrolysis for our future energy system -- 1.1 Introduction -- 1.1.1 Chapter structure -- 1.1.2 Hydrogen and water electrolysis -- 1.1.3 Hydrogen production and use today -- 1.1.4 Does hydrogen have a color? -- 1.2 Motivation and key drivers for hydrogen in the future energy system -- 1.2.1 Historic interest in hydrogen: defossilization -- 1.2.2 The contemporary drive for hydrogen: decarbonization -- 1.2.2.1 The Paris agreement and the remaining CO 2 budget -- 1.2.2.2 Implications of "net zero" for the current energy system -- 1.2.2.3 The toolbox for building a net-zero energy system -- 1.2.3 Net zero versus defossilization versus 100% renewable energy supply -- 1.2.4 Regional drivers for hydrogen -- 1.3 Hydrogen in global energy future scenarios -- 1.3.1 Published energy scenarios with detail on hydrogen -- 1.3.2 Different net-zero strategies and what they mean for hydrogen -- 1.3.2.1 Selection of scenarios for detailed comparison -- 1.3.2.2 Overview and background of the selected scenarios -- 1.3.2.3 Characterization of net-zero strategies and implications for hydrogen -- 1.4 Water electrolysis in a net-zero future -- 1.4.1 Hydrogen by production pathway in net-zero scenarios -- 1.4.2 Required water electrolyzer capacity in net-zero scenarios -- 1.4.3 Are there limitations to solar and wind deployment? -- 1.4.4 Green versus blue hydrogen-renewable versus fossil energy -- 1.5 Summary and outlook to 2030 -- 1.5.1 Unprecedented drive for water electrolysis as a transition enabler -- 1.5.2 Best use of green hydrogen from early water electrolyzer projects -- 1.5.3 Deployment of water electrolysis in the 2030 timeframe -- 1.5.4 Green hydrogen as an accelerator of the energy transition.
Formatted contents note Abbreviations, terminology, units and conversions -- -- References -- 2 - Fundamentals of water electrolysis -- 2.1 Introduction -- 2.1.1 Brief historical perspective -- 2.1.2 The machinery -- 2.2 The water electrolysis cell -- 2.2.1 Cell design -- 2.2.2 Role of electrolyte pH -- 2.2.3 Different electrolysis cells -- 2.3 Thermodynamics -- 2.3.1 Thermochemistry - ideality -- 2.3.1.1 Effect of operating temperature -- 2.3.1.2 Effect of operating pressure -- 2.3.2 Thermochemistry - non-ideality -- 2.3.2.1 Effect of water vapor -- 2.3.2.2 Nonideality due to pressure -- 2.3.3 Electrochemical thermodynamics -- 2.4 Non-equilibrium thermodynamics -- 2.4.1 Review of dissipation sources -- 2.4.2 The hydrogen evolution reaction (HER) -- 2.4.2.1 Acidic aqueous media -- 2.4.2.2 Alkaline media -- 2.4.2.3 Solid oxide -- 2.4.3 The oxygen evolution reaction (OER) -- 2.4.3.1 Acidic media -- 2.4.3.2 Alkaline media -- 2.4.3.3 Solid oxide -- 2.4.4 I-V curves -- 2.5 Cell efficiency -- 2.5.1 Energy efficiency -- 2.5.2 Process energy efficiency -- 2.5.3 Coulombic efficiency -- 2.6 Conclusions -- Glossary -- References -- 3 - Thermochemical hydrogen processes -- 3.1 Introduction -- 3.2 Metal oxide water splitting cycles -- 3.2.1 Generic metal-oxide cycle -- 3.2.2 Cerium oxide cycle -- 3.2.3 Nonstoichiometric perovskite-based solar thermochemical cycles -- 3.3 Copper-chlorine process -- 3.4 Sulfur-based process -- 3.4.1 Sulfur-iodine cycle -- 3.4.2 Hybrid sulfur cycle -- 3.5 Conclusions and outlook -- References -- 4 - The history of water electrolysis from its beginnings to the present -- 4.1 Introduction -- 4.2 First developments -- 4.2.1 Electrochemical fundamentals -- 4.2.2 Direct current generators -- 4.2.3 Drive principles -- 4.3 Preindustrial time up to about 1900 -- 4.3.1 Water electrolysis.
Formatted contents note 4.3.2 Chlor-alkali electrolysis -- 4.3.2.1 Diaphragm process -- 4.3.2.2 Mercury process -- 4.4 Alkaline water electrolysis in the 20th century -- 4.4.1 Industrial commercialization until 1950 -- 4.4.2 Large industrial deployment until 1980 -- 4.4.3 Advanced alkaline water electrolysis -- 4.5 History of polymer electrolyte membrane water electrolysis -- 4.5.1 Military and space application as early driver -- 4.5.2 Beyond niche applications -- 4.5.2.1 United States -- 4.5.2.2 Japan -- 4.5.2.3 Europe -- 4.6 History of high-temperature steam electrolysis -- 4.6.1 Pioneering high-temperature fuel cells -- 4.6.2 Progress in solid oxide electrolysis cells -- 4.7 Recent past with focus on new markets for renewables energies -- 4.7.1 Early German research projects since 1980 -- 4.7.2 Selected international research projects until the early 2000s -- References -- 5 - Alkaline electrolysis-status and prospects -- 5.1 Brief history of water electrolysis -- 5.2 Physical and chemical principles of electrolysis -- 5.2.1 Main technologies of water electrolysis -- 5.2.2 Efficiency of an electrolyzer -- 5.3 Principle of operation of an alkaline electrolyzer -- 5.4 Technical concepts of electrolysis-status and prospects -- 5.4.1 Key performance parameters -- 5.4.2 Technical concepts of alkaline electrolysis-past and today -- 5.5 Materials -- 5.5.1 Separators -- 5.5.2 Electrodes -- 5.5.3 Operating conditions -- 5.6 Degradation effects in alkaline electrolyzers -- 5.7 Anion exchange membrane water electrolysis -- 5.8 Description of technical plants -- 5.8.1 Components of an alkaline electrolysis plant -- 5.9 Alkaline electrolysis-future prospects -- References -- 6 - PEM water electrolysis -- 6.1 General principle and cell layout -- 6.1.1 Introduction -- 6.1.2 Cell layout -- 6.2 Cell and stack materials.
Formatted contents note 6.2.1 Electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction -- 6.2.2 Membrane -- 6.2.3 Bipolar plates -- 6.2.4 Current collectors -- 6.3 Performance on cell and system level -- 6.4 Degradation mechanisms and lifetime -- 6.4.1 Bipolar plates and current collectors -- 6.4.2 Catalysts and electrodes -- 6.5 Electrolyte -- 6.6 System aspects and operational experience -- 6.7 System configuration and design -- 6.8 Modeling of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.9 Material level -- 6.9.1 Modeling of the oxygen evolution reaction mechanism -- 6.9.2 Conductivity of membrane -- 6.10 Cell level -- 6.10.1 Semiempirical modeling -- 6.10.2 Mechanistic multiphase modeling -- 6.11 Stack and system level -- 6.11.1 Stack modeling -- 6.11.2 System modeling combined with renewable intermittent energy sources -- 6.12 Cost reduction potential of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.12.1 Polymer electrolyte membrane or proton exchange membrane electrolyzer cost development -- 6.13 Cost breakdown -- 6.14 Main actors and highlights of recent years -- 6.15 Outlook and new concepts -- References -- 7 - High-temperature steam electrolysis -- 7.1 Introduction and general principle -- 7.2 Architecture of solid oxide cells -- 7.3 Cell materials -- 7.3.1 Electrolyte -- 7.3.2 Hydrogen electrode -- 7.3.3 Oxygen electrode -- 7.3.4 Manufacturing -- 7.4 Stack components and designs -- 7.4.1 Interconnect materials and coatings -- 7.4.2 Sealing materials -- 7.5 Cell performance -- 7.5.1 Introduction: impact of SOFC/SOEC reversibility &amp -- limits of reversibility -- 7.5.2 Testing set-up -- 7.5.3 Performance -- 7.5.3.1 Cathode supported cells -- 7.5.3.2 Electrolyte supported cells -- 7.5.4 Durability.
Formatted contents note 7.5.4.1 Why durability testing on cell &amp -- short stack level? -- 7.5.4.2 Hydrogen electrode-supported cells -- 7.5.4.2.1 Long-term tests -- 7.5.4.2.2 Degradation of the Ni/YSZ H 2 electrode at an elevated current density -- 7.5.4.2.3 Electrode-optimization approaches (microstructure, infiltration) -- 7.5.4.3 Electrolyte supported cells -- 7.5.4.3.1 Long-term tests -- 7.5.4.3.2 Degradation issues -- 7.5.4.3.3 Constant voltage/efficiency operation via temperature adjustment -- 7.5.4.4 Reversible operation -- 7.5.4.4.1 Power variation/operation with current switching -- 7.6 Stack performance -- 7.6.1 Introduction -- 7.6.2 Testing set-up -- 7.6.3 Performance and durability -- 7.6.3.1 Stacks using hydrogen electrode-supported cells -- 7.6.3.2 Stacks using electrolyte supported cells -- 7.6.4 Cycling modes and pressurized operation -- 7.7 Structural analysis of cells and stacks -- 7.7.1 Classical characterization techniques -- 7.7.1.1 Imaging with scanning electron microscopy and transmission electron microscopy -- 7.7.2 Advanced imaging with synchrotron radiation -- 7.7.2.1 Nanoscale X-ray fluorescence 2D mapping -- 7.7.2.2 3D reconstruction using micro and nano X-ray tomography -- 7.8 High temperature steam electrolyzer system -- 7.8.1 Key parameters indicators -- 7.8.2 Balance of plant and system design -- 7.9 From cell to system cost analysis -- 7.10 Summary and outlook on future development -- References -- 8 - Chlor-alkali electrolysis -- 8.1 Introduction -- 8.2 Brief history of the chlor-alkali industry -- 8.3 Overview of chlor-alkali technologies -- 8.3.1 Diaphragm cell [ 2 , 3 ] -- 8.3.2 Mercury cell [ 2 , 3 ] -- 8.3.3 Membrane cell [2-4] -- 8.4 Materials and electrochemistry of a membrane cell -- 8.4.1 Membranes -- 8.4.2 Anodes -- 8.4.3 Cathodes -- 8.4.4 Cell design and operation.
Formatted contents note 8.5 System configuration of membrane cell.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Hydrogen as fuel
9 (RLIN) 31348
Topical term or geographic name entry element Electric power production from chemical action.
Topical term or geographic name entry element Electric batteries.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books
9 (RLIN) 2032
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Garche, J�urgen.
Relator term editor
Personal name Smolinka, Tom.
Relator term editor
Personal name Garche, J.
856 40 - ELECTRONIC LOCATION AND ACCESS
Materials specified ScienceDirect
Public note Connect to resource
Uniform Resource Identifier <a href="https://www.sciencedirect.com/book/9780128194249">https://www.sciencedirect.com/book/9780128194249</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type E-Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Cost, replacement price Date shelved Koha item type Public note
    Library of Congress Classification Geçerli değil-e-Kitap / Not applicable-e-Book E-Kitap Koleksiyonu Merkez Kütüphane Merkez Kütüphane 24/02/2023 Satın Alma / Purchase 0.00 MBN   TP359.H8 E443 2022EBK EBK01176 24/02/2023 0.00 24/02/2023 E-Book
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.