MARC details
000 -LEADER |
fixed length control field |
04692nam a2200409 i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
TR-AnTOB |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230908001006.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
ta |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
171111s2023 xxu e mmmm 00| 0 eng d |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(TR-AnTOB)200453062 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
TR-AnTOB |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
TR-AnTOB |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
Türkçe |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Classification number |
TEZ TOBB FBE BMM Ph.D’23 AKK |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Akkur, Erkan |
Relator term |
author |
9 (RLIN) |
141807 |
245 10 - TITLE STATEMENT |
Title |
Meme kanserinin geliştirilmiş makine öğrenme yöntemleri ile tespiti / |
Statement of responsibility, etc. |
Erkan Akkur; thesis advisor Osman Eroğul. |
246 13 - VARYING FORM OF TITLE |
Title proper/short title |
Detection of breast cancer with improved machine learning algorithms |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Ankara : |
Name of producer, publisher, distributor, manufacturer |
TOBB ETÜ Fen Bilimleri Enstitüsü, |
Date of production, publication, distribution, manufacture, or copyright notice |
2023. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xx, 102 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
unmediated |
Media type code |
n |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
volume |
Carrier type code |
nc |
Source |
rdacarrier |
502 ## - DISSERTATION NOTE |
Dissertation note |
Tez (Doktora Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ocak 2023 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Meme kanseri dünya genelinde kadınlar arasında en sık görülen kanser türüdür. Meme kanseri erken evrede teşhis edilirse, tedavi edilmesi mümkündür. Bu çalışma meme kanserinin tanısı için geliştirilmiş makine öğrenme algoritmalarına dayalı yeni bir sınıflandırma sistemi önermektedir. Geliştirilmiş makine öğrenme algoritmaları oluşturmak amacıyla öznitelik seçim ve hiperparametre optimizasyon yöntemleri kullanılmıştır. Makine öğrenme algoritması olarak sırasıyla Karar Ağacı, Naive Bayes, Destek Vektör Makinesi, K-En Yakın Komşu ve Topluluk Öğrenme yöntemleri kullanılmıştır. Tüm deneyler Wisconsin Meme Kanseri Veri (WBCD) seti ve Mamografi Meme Kanseri Veri Seti (MBCD) olmak üzere iki farklı meme kanseri veri seti üzerinde test edilmiştir. Veri setlerinin en ayırt edici özniteliklerini belirlemek amacıyla sırasıyla Relief, En Küçük Mutlak Daralma ve Seçme Operatörü ((Least Absolute Deviation and Least Absolute Shrinkage and Selection Operator-LASSO) ve Ardışık İleri Yönde Seçim yöntemleri kullanılmıştır. Makine öğrenme algoritmalarındaki en uygun hiperparametreleri bulmak için Bayes optimizasyon (BO) yöntemi kullanılmıştır. Çalışma kapsamında en iyi sınıflandırma oranını elde etmek amacıyla farklı deneyler yapılmıştır. Önerilen öznitelik seçim-Bayes optimizasyon hibrit yöntemleri çalışmada kullanılan makine öğrenme algoritmalarının sınıflandırma oranlarını artırmıştır. Yapılan deneyler sonucunda, LASSO-BO-DVM yöntemi her iki meme kanseri veri setinde de en yüksek doğruluk, kesinlik, duyarlılık ve F1-skorunu göstermiştir (WBCD için %98,95, %97,17, %100 ve %98,56; MBCD için %97,95, %98,28, %98,28 ve %98,28) |
|
Summary, etc. |
Breast cancer is the most common cancer type among women worldwide. If breast cancer is detected at an early stage, it can be cured. This study proposes a novel classification model based improved machine learning algorithms for diagnosis of breast cancer. Feature selection and hyperparameter optimization methods are used to build improved the machine learning algorithms. Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Essemble Learning methods are used as machine learning algorithms, respectively. All experiments are tested on two different datasets, Wisconsin Breast Cancer Dataset (WBCD) and Mammographic Breast Cancer Dataset (MBCD). Relief, Least Absolute Deviation and Least Absolute Shrinkage and Selection Operator (LASSO) and Sequential Forward Selection methods are used to determine the most distinctive features of the datasets, respectively. Bayesian optimization (BO) method is used to find optimal hyperparameters in machine learning algorithms. Within the scope of this study, different experiments are conducted in order to obtain the best classification rate. The proposed feature selection-Bayes optimization hybrid methods have increased the classification rates of the machine learning algorithms used in the study. As a result of the experiments, LASSO-BO-SVM has showed the highest accuracy, precision, recall and F1-score in both datasets (%98,95, %97,17, %100, %98,56 for WBCD; %97.95, %98,28, %98,28, %98,28 for MBCD) |
653 ## - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Meme kanseri |
|
Uncontrolled term |
Makine öğrenmesi |
|
Uncontrolled term |
Hiperparametre optimizasyonu |
|
Uncontrolled term |
Öznitelik seçim yöntemleri |
|
Uncontrolled term |
Breast cancer |
|
Uncontrolled term |
Machine learning |
|
Uncontrolled term |
Hyperparameter optimization |
|
Uncontrolled term |
Feature selection methods |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Eroğul, Osman |
9 (RLIN) |
126315 |
Relator term |
advisor |
710 ## - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
TOBB Ekonomi ve Teknoloji Üniversitesi. |
Subordinate unit |
Fen Bilimleri Enstitüsü |
9 (RLIN) |
77078 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Thesis |
Source of classification or shelving scheme |
Other/Generic Classification Scheme |