Meme kanserinin geliştirilmiş makine öğrenme yöntemleri ile tespiti / (Record no. 200453062)

MARC details
000 -LEADER
fixed length control field 04692nam a2200409 i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230908001006.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2023 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200453062
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE BMM Ph.D’23 AKK
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Akkur, Erkan
Relator term author
9 (RLIN) 141807
245 10 - TITLE STATEMENT
Title Meme kanserinin geliştirilmiş makine öğrenme yöntemleri ile tespiti /
Statement of responsibility, etc. Erkan Akkur; thesis advisor Osman Eroğul.
246 13 - VARYING FORM OF TITLE
Title proper/short title Detection of breast cancer with improved machine learning algorithms
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2023.
300 ## - PHYSICAL DESCRIPTION
Extent xx, 102 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Doktora Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ocak 2023
520 ## - SUMMARY, ETC.
Summary, etc. Meme kanseri dünya genelinde kadınlar arasında en sık görülen kanser türüdür. Meme kanseri erken evrede teşhis edilirse, tedavi edilmesi mümkündür. Bu çalışma meme kanserinin tanısı için geliştirilmiş makine öğrenme algoritmalarına dayalı yeni bir sınıflandırma sistemi önermektedir. Geliştirilmiş makine öğrenme algoritmaları oluşturmak amacıyla öznitelik seçim ve hiperparametre optimizasyon yöntemleri kullanılmıştır. Makine öğrenme algoritması olarak sırasıyla Karar Ağacı, Naive Bayes, Destek Vektör Makinesi, K-En Yakın Komşu ve Topluluk Öğrenme yöntemleri kullanılmıştır. Tüm deneyler Wisconsin Meme Kanseri Veri (WBCD) seti ve Mamografi Meme Kanseri Veri Seti (MBCD) olmak üzere iki farklı meme kanseri veri seti üzerinde test edilmiştir. Veri setlerinin en ayırt edici özniteliklerini belirlemek amacıyla sırasıyla Relief, En Küçük Mutlak Daralma ve Seçme Operatörü ((Least Absolute Deviation and Least Absolute Shrinkage and Selection Operator-LASSO) ve Ardışık İleri Yönde Seçim yöntemleri kullanılmıştır. Makine öğrenme algoritmalarındaki en uygun hiperparametreleri bulmak için Bayes optimizasyon (BO) yöntemi kullanılmıştır. Çalışma kapsamında en iyi sınıflandırma oranını elde etmek amacıyla farklı deneyler yapılmıştır. Önerilen öznitelik seçim-Bayes optimizasyon hibrit yöntemleri çalışmada kullanılan makine öğrenme algoritmalarının sınıflandırma oranlarını artırmıştır. Yapılan deneyler sonucunda, LASSO-BO-DVM yöntemi her iki meme kanseri veri setinde de en yüksek doğruluk, kesinlik, duyarlılık ve F1-skorunu göstermiştir (WBCD için %98,95, %97,17, %100 ve %98,56; MBCD için %97,95, %98,28, %98,28 ve %98,28)
Summary, etc. Breast cancer is the most common cancer type among women worldwide. If breast cancer is detected at an early stage, it can be cured. This study proposes a novel classification model based improved machine learning algorithms for diagnosis of breast cancer. Feature selection and hyperparameter optimization methods are used to build improved the machine learning algorithms. Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbor and Essemble Learning methods are used as machine learning algorithms, respectively. All experiments are tested on two different datasets, Wisconsin Breast Cancer Dataset (WBCD) and Mammographic Breast Cancer Dataset (MBCD). Relief, Least Absolute Deviation and Least Absolute Shrinkage and Selection Operator (LASSO) and Sequential Forward Selection methods are used to determine the most distinctive features of the datasets, respectively. Bayesian optimization (BO) method is used to find optimal hyperparameters in machine learning algorithms. Within the scope of this study, different experiments are conducted in order to obtain the best classification rate. The proposed feature selection-Bayes optimization hybrid methods have increased the classification rates of the machine learning algorithms used in the study. As a result of the experiments, LASSO-BO-SVM has showed the highest accuracy, precision, recall and F1-score in both datasets (%98,95, %97,17, %100, %98,56 for WBCD; %97.95, %98,28, %98,28, %98,28 for MBCD)
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Meme kanseri
Uncontrolled term Makine öğrenmesi
Uncontrolled term Hiperparametre optimizasyonu
Uncontrolled term Öznitelik seçim yöntemleri
Uncontrolled term Breast cancer
Uncontrolled term Machine learning
Uncontrolled term Hyperparameter optimization
Uncontrolled term Feature selection methods
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Eroğul, Osman
9 (RLIN) 126315
Relator term advisor
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 15/05/2023 Bağış / Donation   TEZ TOBB FBE BMM Ph.D’23 AKK TZ01525 15/05/2023 1 15/05/2023 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.