Applying Predictive Analytics (Record no. 200457965)

MARC details
000 -LEADER
fixed length control field 09190nam a22005655i 4500
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20231114111104.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 211222s2022 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783030830700
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-3-030-83070-0
Source of number or code doi
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title İngilizce
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9.D343
072 #7 - SUBJECT CATEGORY CODE
Subject category code TJK
Source bicssc
Subject category code TEC041000
Source bisacsh
Subject category code TJK
Source thema
090 ## - LOCALLY ASSIGNED LC-TYPE CALL NUMBER (OCLC); LOCAL CALL NUMBER (RLIN)
Classification number (OCLC) (R) ; Classification number, CALL (RLIN) (NR) QA76.9.D343EBK
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name McCarthy, Richard V.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Applying Predictive Analytics
Medium [electronic resource] :
Remainder of title Finding Value in Data /
Statement of responsibility, etc. by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci.
250 ## - EDITION STATEMENT
Edition statement 2nd ed. 2022.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cham :
Name of producer, publisher, distributor, manufacturer Springer International Publishing :
-- Imprint: Springer,
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
347 ## - DIGITAL FILE CHARACTERISTICS
File type text file
Encoding format PDF
Source rda
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1 -- Introduction to Predictive Analytics -- 1.1 Predictive Analytics in Action -- 1.2 Analytics Landscape -- 1.3 Analytics -- 1.3.2 Predictive Analytics -- 1.4 Regression Analysis -- 1.5 Machine Learning Techniques -- 1.6 Predictive Analytics Model -- 1.7 Opportunities in Analytics -- 1.8 Introduction to the Automobile Insurance Claim Fraud Example -- 1.9 Chapter Summary -- References -- Chapter 2 -- Know Your Data – Data Preparation -- 2.1 Classification of Data -- 2.1.1 Qualitative versus Quantitative -- 2.1.2 Scales of Measurement -- 2.2. Data Preparation Methods. -- 2.2.1 Inconsistent Formats -- 2.2.2 Missing Data -- 2.2.3 Outliers -- 2.2.4 Other Data Cleansing Considerations -- 2.3 Data Sets and Data Partitioning -- 2.4 SAS Enterprise Miner™ Model Components -- 2.4.1 Step 1. Create Three of the Model Components -- 2.4.2 Step 2. Import an Excel File and Save as a SAS File -- 2.4.3 Step 3. Create the Data Source -- 2.4.4 Step 4. Partition the Data Source -- 2.4.5 Step 5 Data Exploration -- 2.4.6 Step 6 Missing Data -- 2.4.7 Step 7. Handling Outliers -- 2.4.8 Step 8. Categorical Variables with Too Many Levels -- 2.5 Chapter Summary -- References -- Chapter 3 -- What do Descriptive Statistics Tell Us -- 3.1 Descriptive Analytics -- 3.2 The Role of the Mean, Median and Mode -- 3.3 Variance and Distribution -- 3.4 The Shape of the Distribution -- 3.4.2 Kurtosis -- 3.5 Covariance and Correlation -- 3.6 Variable Reduction -- 3.6.1 Variable Clustering -- 3.6.2 Principal Component Analysis -- 3.7 Hypothesis Testing -- 3.8 Analysis of Variance (ANOVA) -- 3.9 Chi Square -- 3. Fit Statistics -- 3. Stochastic Models -- 3.12 Chapter Summary -- References -- Chapter 4 -- Predictive Models Using Regression -- 4.1 Regression -- 4.1.1 Classical assumptions -- 4.2 Ordinary Least Squares -- 4.3 Simple Linear Regression -- 4.3.1 Determining Relationship Between Two Variables -- 4.3.2 Line of Best Fit and Simple Linear Regression Equation -- 4.4 Multiple Linear Regression -- 4.4.1 Metrics to Evaluate the Strength of the Regression Line -- 4.3.2 Best-fit model -- 4.3.3 Selection of Variables in Regression -- 4.5 Principal Component Regression -- 4.5.1 Principal Component Analysis Revisited -- 4.5.2 Principal Component Regression -- 4.6 Partial Least Squares -- 4.7 Logistic Regression -- 4.7.1 Binary Logistic Regression -- 4.7.2 Examination of Coefficients -- 4.7.3 Multinomial Logistic Regression -- 4.7.4 Ordinal Logistic Regression -- 4.8 Implementation of Regression in SAS Enterprise Miner™ -- 4.8.1 Regression Node Train Properties: Class Targets -- 4.8.2 Regression Node Train Properties: Model Options -- 4.8.3 Regression Node Train Properties: Model Selection -- 4.9 Implementation of Two-Factor Interaction and Polynomial Terms -- 4.9.1 Regression Node Train Properties: Equation -- 4. DMINE Regression in SAS Enterprise Miner™ -- 4..1 DMINE Properties -- 4..2 DMINE Results -- 4. Partial Least Squares Regression in SAS Enterprise Miner™ -- 4..1 Partial Least Squares Properties -- 4..2 Partial Least Squares Results -- 4. Least Angles Regression in SAS Enterprise Miner™ -- 4..1 Least Angle Regression Properties -- 4..2 Least Angles Regression Results -- 4. Other Forms of Regression -- 4. Chapter Summary -- References -- Chapter 5 -- The Second of the Big Three – Decision Trees -- 5.1 What is a Decision Tree? -- 5.2 Creating a Decision Tree -- 5.3 Data Partitions and Decision Trees -- 5.4 Creating a Decision Tree Using SAS Enterprise Miner™ -- The key properties include: -- Subtree Properties -- 5.4.1 Overfitting -- 5.5 Creating an Interactive Decision Tree using SAS Enterprise Miner ™ -- 5.6 Creating a Maximal Decision Tree using SAS Enterprise Miner ™ -- 5.7 Chapter Summary -- References -- Chapter 6 -- The Third of the Big Three - Neural Networks -- 6.1 What is a Neural Network? -- 6.2 History of Neural Networks -- 6.3 Components of a Neural Network -- 6.4 Neural Network Architectures -- 6.5 Training a Neural Network -- 6.6 Radial Basis Function Neural Networks -- 6.7 Creating a Neural Network using SAS Enterprise MinerÔ -- 6.8 Using SAS Enterprise MinerÔ to Automatically Generate a Neural Network -- 6.9 Explaining a Neural Network -- 6. Chapter Summary -- References -- Chapter 7 -- Model Comparisons and Scoring -- 7.1 Beyond the Big -- 7.2 Gradient Boosting -- 7.3 Ensemble Models -- 7.4 Random Forests -- 7.6 Two-Stage Model -- 7.7 Comparing Predictive Models -- 7.7.1 Evaluating Fit Statistics – Which Model Do We Use? -- 7.8 Using Historical Data to Predict the Future – Scoring -- 7.8.1 Analyzing and Reporting Results -- 7.8.2 Save Data Node -- 7.8.3 Reporter Node -- 7.9 The Importance of Predictive Analytics -- 7.9.1 What Should We Expect for Predictive Analytics in the Future? -- 7. Chapter Summary -- References -- Chapter 8 -- finding Associations in Data through Cluster Analysis -- 8.1 Applications and Uses of Cluster Analysis -- 8.2 Types of Clustering Techniques -- 8.3 Hierarchical Clustering -- 8.3.1 Agglomerative Clustering -- 8.3.2 Divisive Clustering -- 8.3.3 Agglomerative vs Divisive Clustering -- 8.4 Non-hierarchical clustering -- 8.4.1 K-means Clustering -- 8.4.2 Initial Centroid Selection -- 8.4.3 Determining the Number of Clusters -- 8.4.4 Evaluating your clusters -- 8.5 Hierarchical vs Nonhierarchical -- 8.6 Cluster Analysis using SAS Enterprise Miner™ -- 8.6.1 Cluster Node -- 8.6.2 Additional Key Properties of the Cluster Node -- 8.7 Applying Cluster Analysis to the Insurance Claim Fraud Data Set -- 8.8 Chapter Summary -- References -- -- Chapter 9 -- 9.1 What is Text Analytics? -- 9.2 Information Retrieval -- 9.3 Text Parsing -- 9.4 Zipf’s Law -- 9.5 Text Filter -- 9.6 Text Cluster -- 9.7 Text Topic -- 9.8 Text Rule Builder -- 9.9 Text Profile -- 9. Chapter Summary -- Discussion Questions -- References -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Appendix B -- Can you Predict the Money Laundering Cases? -- B.1 Introduction -- B.2. Business Problem -- B.3. Analyze Data -- B.4. Development and Optimization of a Best Fit Model -- B.5. Final Report -- References. .
520 ## - SUMMARY, ETC.
Summary, etc. The new edition of this textbook presents a practical, updated approach to predictive analytics for classroom learning. The authors focus on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life examples of how business analytics have been used in various aspects of organizations to solve issues or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. The new edition includes chapters on clusters and associations and text mining to support predictive models. An additional case is also included that can be used with each chapter or as a semester project.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Telecommunication.
Topical term or geographic name entry element Computational intelligence.
Topical term or geographic name entry element Data mining.
Topical term or geographic name entry element Business information services.
Topical term or geographic name entry element Communications Engineering, Networks.
Topical term or geographic name entry element Computational Intelligence.
Topical term or geographic name entry element Data Mining and Knowledge Discovery.
Topical term or geographic name entry element IT in Business.
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Enterprise miner -- Textbooks
Uncontrolled term Data mining
Uncontrolled term SAS (Computer program language)
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name McCarthy, Mary M.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
Personal name Ceccucci, Wendy.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://doi.org/10.1007/978-3-030-83070-0">https://doi.org/10.1007/978-3-030-83070-0</a>
Materials specified Springer eBooks
Public note Online access link to the resource
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type E-Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Date acquired Source of acquisition Coded location qualifier Inventory number Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type Public note
    Library of Congress Classification Geçerli değil-e-Kitap / Not applicable-e-Book E-Kitap Koleksiyonu Merkez Kütüphane Merkez Kütüphane 11/10/2023 Satın Alma / Purchase BİL   QA76.9.D343EBK EBK02813 14/11/2023 1 14/11/2023 E-Book
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.