Eklemeli imalattan gelen belirsizlikler altında kendinden destekli latis yapı tasarımı için bir optimizasyon yöntemi geliştirilmesi / (Record no. 200460238)

MARC details
000 -LEADER
fixed length control field 08438nam a2200517 i 4500
001 - CONTROL NUMBER
control field 200460238
003 - CONTROL NUMBER IDENTIFIER
control field TR-AnTOB
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240522152734.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field ta
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171111s2024 xxu e mmmm 00| 0 eng d
035 ## - SYSTEM CONTROL NUMBER
System control number (TR-AnTOB)200460238
040 ## - CATALOGING SOURCE
Original cataloging agency TR-AnTOB
Language of cataloging eng
Description conventions rda
Transcribing agency TR-AnTOB
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title Türkçe
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number TEZ TOBB FBE MAK YL’24 YAM
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Yamaner, Yusuf
Relator term author
9 (RLIN) 145389
245 10 - TITLE STATEMENT
Title Eklemeli imalattan gelen belirsizlikler altında kendinden destekli latis yapı tasarımı için bir optimizasyon yöntemi geliştirilmesi /
Statement of responsibility, etc. Yusuf Yamaner ; thesis advisor Muhammet Görgülüarslan.
246 11 - VARYING FORM OF TITLE
Title proper/short title Developement of an optimization method for self-supporting lattice structure design under uncertainties arising from additıve manufacturing
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Ankara :
Name of producer, publisher, distributor, manufacturer TOBB ETÜ Fen Bilimleri Enstitüsü,
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent xxii, 131 pages :
Other physical details illustrations ;
Dimensions 29 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Tez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Mart 2024
520 ## - SUMMARY, ETC.
Summary, etc. Latis yapıların hafif ve yüksek dayanıma sahip olmaları ve kolay modellenebilir topolojik özellikleri sayesinde günümüzde giderek daha fazla tercih sebebi olmaktadır. Karmaşık geometrileri sebebiyle çubuk tabanlı latis yapıların üretiminde eklemeli imalat tercih edilmektedir. Mevcut eklemeli imalat tezgahlarında genellikle milimetre mertebesinde tasarlanan çubuk elemanlar üzerinde, katman katman üretim esnasında mikro ve milimetre seviyesinde değişkenlikler ve belirsizlikler oluşmaktadır. Bu değişimler tasarlanan ve üretilen yapı arasında mekanik özelliklerde fark çıkmasına sebep olmaktadır. Eklemeli imalat sayesinde latis yapılar üzerinde dayanımı arttıracak optimizasyon algoritmalarının uygulanması mümkündür ve optimizasyon sonuçlarında karmaşık geometriler oluşmaktadır. Optimize edilmiş tasarımlar, oluşan karmaşık topoloji sebebiyle destek yapılarının kullanımını gerektirebilir. Bu destek yapılarını var olan çubuk elemanları etkilemeden oluşturmak veya üretimden sonra karmaşık topolojiden çıkarmak, destek yapılarının söküm esnasında da yapıya zarar vermemek kolay değildir. Bu çalışmada, tasarlanan latis yapıların geometri ve malzeme özelliklerinde, üretim teknolojisinden dolayı oluşan belirsizlikler hesaba katılarak, elde edilen geometride destek yapısı gereksinimi olmadan kendinden destekli olarak üretilebilecek, iki adımlı bir latis optimizasyonu prosedürü önerilmiştir. Bu amaçla, latis yapıları oluşturan çubuk elemanları modellemek için kullanılacak çap ve açı değişkenleri ile bunların malzeme ekstrüzyonu ile eklemeli imalatından dolayı oluşan belirsizlikler altında daha önceki bir çalışmada belirlenen homojenize özellikler arasında yapay sinir ağları modelleri kullanarak yapı-özellik ilişkileri oluşturulmuştur. Geliştirilen yapay sinir ağı modeli, çubuk elemanlarla modellenerek latis optimizasyonu sürecine entegre edilmiştir. İlk olarak MATLAB üzerinde, çözüm ağıyla modellenmiş bir yapıyı latis hücrelerle modelleyen bir algoritma oluşturulmuştur. Burada oluşan topolojik bilgileri kullanarak iki adımlı optimizasyon algoritması başlatılır. İki adımlı optimizasyonun ilk adımı, çapları sıfıra yakın olan çubuk elemanlarının topolojiden çıkarıldığı klasik yerleşim optimizasyonudur. İkinci adımda gerçekleştirilen boyut optimizasyonu, belirlenen minimum üretim çapı kısıtlaması ile topolojideki çubuk elemanların optimize edilmiş çaplarını belirlemek için gerçekleştirilir. İki optimizasyon süreci arasında, topolojide destek yapısı gerektiren çubuk elemanlar tespit edilerek, yapıyı kendinden destekli bir şekilde üretebilecek destek yapı algoritması geliştirilmiştir. Elde edilen nihai optimize edilmiş geometriyi, üretilebilir bir STL model oluşturan bir yüzey oluşturma algoritması da çalışma kapsamında geliştirilmiştir. Optimizasyon ile tasarlanan örnek uygulamalar üretilerek test edilmiş ve metodolojinin etkinliği doğrulanmıştır.
Summary, etc. The lightweight and high strength characteristics of lattice structures, coupled with their easily modellable topological features, are increasingly becoming preferred choices in engineering applications. Due to their complex geometries, additive manufacturing is preferred for the fabrication of strut-based lattice structures. These structures are primarily composed of strut elements. Considering the current capabilities of additive manufacturing, variations and uncertainties at the micro and millimeter levels often arise during layer-by-layer production of strut elements typically designed at the millimeter scale. These changes cause a difference in mechanical properties between the designed and manufactured structure. The application of optimizations aimed at enhancing the strength of lattice structures is feasible through additive manufacturing, resulting in the formation of complex geometries in optimization outcomes. Optimized designs may necessitate the use of support structures due to the resulting topology optimization. However, generating these support structures without affecting existing strut elements or removing them from the complex topology post-production without causing damage to the structure is not straightforward. In this study, a two-step lattice optimization procedure is proposed as a design approach to account for uncertainties arising from the additive manufacturing of lattice structures, impacting their geometry and material properties. This approach allows to produce self-supporting optimization results without the need for additional support structures during the design process. For material extrusion, structure-property relationships were established using artificial neural networks between the parameters governing the modelling of strut elements, including diameter and angle variations, and the homogenized properties characterized in a previous study under uncertainties arising from the additive manufacturing by material extrusion. The artificial neural network model has been integrated into the lattice optimization process, which involves modelling with strut elements. Initially, an algorithm was created in MATLAB to convert a meshed model to lattice cells. Using the topological information obtained, a two-step optimization algorithm is initiated. The first step of the two-step optimization is the classical layout optimization where strut elements with diameters close to zero are removed from the topology. The second size optimization is performed to determine the optimized diameters of the strut elements in the topology with the specified minimum manufacturing constraint. Between the two optimization stages, a self-support structure algorithm has been developed to identify strut elements in the optimized topology requiring support. This algorithm adds supports by incorporating strut elements into the structure before topology optimization, enabling self-supporting structure fabrication. Additionally, within the scope of this study, a surface generation algorithm has been developed to create a manufacturable STL model representing the final optimized geometry. The proposed method's effectiveness is showed through benchmark examples in literature. Fabrication of the optimized designs was carried out using material extrusion technique, followed by testing to validate the efficacy of the proposed approach.
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Eklemeli imalat
Uncontrolled term Latis yapı
Uncontrolled term Topoloji optimizasyonu
Uncontrolled term Boyut optimizasyonu
Uncontrolled term Latis hücre modellemesi
Uncontrolled term Destek algoritması
Uncontrolled term Yapay sinir ağı
Uncontrolled term Belirsizlik karakterizasyonu
Uncontrolled term Additive manufacturing
Uncontrolled term Lattice structure
Uncontrolled term Topology optimization
Uncontrolled term Size optimization
Uncontrolled term Lattice cell modelling
Uncontrolled term Support algorithm
Uncontrolled term Artificial neural network
Uncontrolled term Uncertainty characterization
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Görgülüarslan, Recep Muhammet
9 (RLIN) 128374
Relator term advisor
710 ## - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element TOBB Ekonomi ve Teknoloji Üniversitesi.
Subordinate unit Fen Bilimleri Enstitüsü
9 (RLIN) 77078
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Other/Generic Classification Scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Date shelved Koha item type
    Other/Generic Classification Scheme Ödünç Verilemez-Tez / Not For Loan-Thesis Tezler Merkez Kütüphane Merkez Kütüphane Tez Koleksiyonu / Thesis Collection 21/05/2024 Bağış / Donation   TEZ TOBB FBE MAK YL’24 YAM TZ01662 21/05/2024 1 21/05/2024 Thesis
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.