TY - BOOK AU - Akın,Çağlanaz AU - Ören,Ersin Emre ED - TOBB Ekonomi ve Teknoloji Üniversitesi. TI - Moleküler katkılamaların DNA'nın moleküler yapısı ve elektriksel iletkenliği üzerindeki etkilerinin incelenmesi PY - 2020/// CY - Ankara PB - TOBB ETÜ Fen Bilimleri Enstitüsü KW - Tezler, Akademik KW - Moleküler elektronik KW - Moleküler katkılama KW - Teori ve modelleme KW - Moleküler dinamik KW - Yoğunluk fonksiyonel teorisi KW - Yük taşınımı KW - DNA KW - İnterkalasyon KW - İlaç-DNA etkileşimleri KW - Molecular electronics KW - Molecular doping KW - Theory and modeling KW - Molecular dynamics KW - Density functional theory KW - Charge transport KW - Intercalation KW - Drug-DNA interactions N1 - Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ağustos 2020 N2 - Tek bir molekülün üzerinden geçen elektrik akımı ölçülebildiği zamandan bu yana moleküler elektronik alanında çalışmalar hız kazanmıştır. Bu çalışmaların genel amacı, yeni nesil entegre devrelerde kullanılmak üzere elektronik cihazların işlem hızını ve hafızasını arttırmaya yönelik geliştirilecek teknolojiler için bilgi birikimi oluşturmaktır. Bu tez kapsamında bahsedilen bilgi birikimine katkı sağlamak amacıyla, moleküler katkılamaların DNA'nın moleküler yapısı ve elektriksel iletkenliği üzerindeki etkileri incelendi. DNA'yı moleküler olarak katkılamanın en bilinen yolu DNA'yı hedefleyen antikanser, antiparaziter ve antibiyotik ilaçları kullanmaktadır. Bu tez kapsamında sensör teknolojisine ve ilaç-DNA etkileşimlerinin anlaşılmasına da katkı sağlamak amacıyla moleküler katkılamalar ilaç molekülleriyle yapılmıştır. Moleküler yapı incelemeleri için AMBER 16 programı kullanılarak moleküler dinamik simülasyonları yapıldı. Simülasyon süresince meydana gelen değişimleri incelemek adına; yapıların referans formlara benzerlikleri, DNA'nın baz çiftleri arasındaki hidrojen bağları ve DNA dizilimindeki pürinler arası mesafeler hesaplandı. Kümeleme algoritması kullanılarak her simülasyonu temsil eden bir temsilci yapı seçildi. Temsilci yapının kuantum mekaniksel özellikleri DFT yardımıyla hesaplanırken Gaussian 09 programı kullanıldı. Elde edilen sonuçlar v kullanılarak yapıların bant diyagramları elde edildi. Ardından her yapı için yük taşınım olasılıkları hesaplandı. Yapılan çalışmalar sonucunda, farklı moleküler katkılamaların DNA'nın moleküler yapısını ve elektriksel iletkenliğini farklı etkilediği gösterildi. Tez kapsamında yapılan çalışmanın moleküler elektronik alanında katkı sağlamasının yanı sıra ilaç testi adı verilen ölçümler için ileride geliştirilebilecek sensör teknolojilerine de katkı sağlaması beklenmektedir; Many studies have done in the field of molecular electronics since the ability of measuring the electrical current through a single molecule. These studies generally aim to create knowledge to develop the technologies which aims to increase the calculation speed and memory of electronic devices to be used in integrated circuits. In this thesis, contributing to this knowledge is aimed and effects of molecular doping on the molecular structure and electrical conductivity of DNA are investigated. The most known way to dope the DNA is the usage of anticancer, antiparasitic and antibiotic drugs which already target the DNA. In this thesis, doping were done using drug molecules to contribute the sensor technologies and understanding of drug-DNA interactions too. To investigate the molecular structures, molecular dynamics simulations were done with AMBER 16 software program. To examine the molecular structure changes among simulation time; similarities between the structures and reference structures, hydrogen bonding between DNA base pairs and the distances between purines in the DNA sequence are calculated. With clustering algorithm, representative structures were choosen from simulations. Gaussian 09 software program was used to calculate quantum mechanichal properties of representative structures and band diagrams of the structures were analyzed. Later, charge transport vii probabilities were calculated for all structures. Results showed that, various molecular doping have different effect on both molecular structure and electrical conductivity of DNA. This thesis may contribute to sensor technologies for drug screening as well as molecular electronics ER -