Öztürk, Ahmet Cankat

Tiroid nodüllerinin genetik algoritma ile eğitilen anfıs yöntemi kullanılarak iyi huylu ve kötü huylu olarak ayrıştırılması ile yeni bir bilgisayar destekli tanı temelli risk sınıflandırma sistemi önerilmesi / Differentiation of benign and malignant thyroid nodules with anfis by using genetic algorithm and proposing a novel cad-based risk stratifıcation system of thyroid nodules Ahmet Cankat Öztürk; thesis advisor Osman Eroğul. - xxi, 109 pages : illustrations ; 29 cm

Tez (Doktora Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2023

Literatürde kullanılan tiroid nodülü risk sınıflandırma rehberleri, nodüllerin bazı iyi bilinen sonografik özelliklerine göre, hekimlerin klinik tecrübelerine dayanarak oluşturulmuşlardır. Bu özelliklere göre nodüllere tanı konması subjektif bir yöntem olup hekimin tecrübesine bağlıdır. Bu çalışmada, yapay zeka yöntemleri kullanılarak, nodüllerin ayırıcı tanısında çok çeşitli ultrason bulgularının ilişkileri incelenmiş, bu durumun üstesinden gelinmesi amaçlanmıştır. Uyarlanabilir Sinirsel Bulanık Çıkarım Sistemi'nin (ANFIS) Genetik Algoritma (GA) ile eğitimine dayalı yenilikçi bir yöntem, kötü huylu tiroid nodüllerini iyi huylu olanlardan ayırt etmek için kullanılmıştır. Önerilen yöntemden elde edilen sonuçlar yaygın olarak kullanılan ANFIS'in türev tabanlı optimize edilen algoritmaları ve Derin Sinir Ağı (DNN) yöntemi ile karşılaştırılmış, önerilen yöntemin tiroid nodüllerini sınıflandırmada daha başarılı olduğu gösterilmiştir. Ayrıca tiroid nodüllerinin sınıflandırılması için literatürde olmayan bilgisayar destekli tanı (BDT) temelli yeni bir risk sınıflandırma sistemi önerilmiştir. The thyroid nodule risk stratification guidelines used in the literature are based on certain well-known sonographic features of nodules and are still subjective since the application of these characteristics strictly depends on the reading physician. These guidelines classify nodules according to the sub-features of limited sonographic signs. This study aims to overcome these limitations by examining the relationships of a wide range of ultrasound signs in the differential diagnosis of nodules by using artificial intelligence methods. An innovative method based on training Adaptive Neuro-Fuzzy Inference Systems (ANFIS) by using Genetic Algorithm (GA) is used to differentiate malignant from benign thyroid nodules. The comparison of the results from the proposed method to the results from the commonly used derivative-based algorithms and Deep Neural Network (DNN) methods yielded that the proposed method is more successful in differentiating malignant from benign thyroid nodules. Furthermore, a novel computer aided diagnosis (CAD) based risk stratification system for the thyroid nodule's ultrasound classification that is not present in the literature is proposed.

Tiroid Tiroid nodülü Sınıflandırma ANFIS Derin sinir ağı Rehber Thyroid Thyroid nodule Classification ANFIS Deep neural network Guideline