Numerical methods for scientists and engineers /
R.W. Hamming.
- Second edition
- ix, 721 pages : illustrations, tables ; 22 cm
Reprint. Originally published: New York : McGraw-Hill, 1973
Includes bibliographical references and index.
Fundamentals and algorithms : An essay on numerical methods -- Numbers -- Function evaluation -- Real zeros -- Complex zeros -- Zeros of polynomials -- Linear equations and matrix inversion -- Random numbers -- The difference calculus -- Roundoff -- The summation calculus -- Infinite series -- Difference equations -- Polynomial approximation-classical theory : Polynomial interpolation -- Formulas using function values -- Error terms -- Formulas using derivatives -- Formulas using differences -- Formulas using the sample points as parameters -- Composite formulas -- Indefinite integrals-feedback -- Introduction to differential equations -- A general theory of predictor-corrector methods -- Special methods of integrating ordinary differential equations -- Least squares: theory -- Orthogonal functions -- Least squares: practice -- Chebyshev approximation: theory -- Chebyshev approximation: practice -- Rational function approximation -- Fourier approximation-modern theory : Fourier series: periodic functions -- Convergence of Fourier series -- The fast Fourier transform -- The Fourier integral: nonperiodic functions -- A second look at polynomial approximation-filters -- Integrals and differential equations -- Design of digital filters -- Quantization of signals -- Exponential approximation : Sums of exponentials -- The Laplace transformation -- Simulation and the method of zeros and poles -- Miscellaneous : Approximations to singularities -- Optimization -- Linear independence : Eigenvalues and eigenvectors of Hermitian matrices -- N+1 The art of computing for scientists and engineers