Image from Google Jackets

Comparative Gene Finding : Models, Algorithms and Implementation / by Marina Axelson-Fisk.

By: Contributor(s): Material type: TextTextLanguage: İngilizce Series: Computational Biology ; 20Publisher: London : Springer London : Imprint: Springer, 2015Edition: 2nd ed. 2015Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781447166931
Subject(s): LOC classification:
  • QH324.2-324.25
Online resources:
Contents:
Introduction -- Single Species Gene Finding -- Sequence Alignment -- Comparative Gene Finding -- Gene Structure Submodels -- Parameter Training -- Implementation of a Comparative Gene Finder -- Annotation Pipelines for Next Generation Sequencing Projects.
Summary: This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology, including annotation pipelines for NGS data. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory, and numerical analysis. Topics and features: Introduces the fundamental terms and concepts in the field, and provides an historical overview of algorithm development Discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding Explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training Illustrates how to implement a comparative gene finder, reviewing the different steps and accuracy assessment measures used to debug and benchmark the software Examines NGS techniques, and how to build a genome annotation pipeline, discussing sequence assembly, de novo repeat masking, and gene prediction (NEW) Postgraduate students, and researchers wishing to enter the field quickly, will find this accessible text a valuable source of insights and examples. A suggested course outline for instructors is provided in the preface. Dr. Marina Axelson-Fisk is an Associate Professor at the Department of Mathematical Sciences of Chalmers University of Technology, Gothenburg, Sweden.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane Merkez Kütüphane E-Kitap Koleksiyonu QH324.2-324.25EBK (Browse shelf(Opens below)) Geçerli değil-e-Kitap / Not applicable-e-Book EBK00196

Introduction -- Single Species Gene Finding -- Sequence Alignment -- Comparative Gene Finding -- Gene Structure Submodels -- Parameter Training -- Implementation of a Comparative Gene Finder -- Annotation Pipelines for Next Generation Sequencing Projects.

This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology, including annotation pipelines for NGS data. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory, and numerical analysis. Topics and features: Introduces the fundamental terms and concepts in the field, and provides an historical overview of algorithm development Discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding Explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training Illustrates how to implement a comparative gene finder, reviewing the different steps and accuracy assessment measures used to debug and benchmark the software Examines NGS techniques, and how to build a genome annotation pipeline, discussing sequence assembly, de novo repeat masking, and gene prediction (NEW) Postgraduate students, and researchers wishing to enter the field quickly, will find this accessible text a valuable source of insights and examples. A suggested course outline for instructors is provided in the preface. Dr. Marina Axelson-Fisk is an Associate Professor at the Department of Mathematical Sciences of Chalmers University of Technology, Gothenburg, Sweden.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.