Image from Google Jackets

Machine and Deep Learning in Oncology, Medical Physics and Radiology [electronic resource] / edited by Issam El Naqa, Martin J. Murphy.

Contributor(s): Material type: TextTextLanguage: İngilizce Publisher: Cham : Springer International Publishing : Imprint: Springer, 2022Edition: 2nd ed. 2022Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030830472
Subject(s): NLM classification:
  • WN 250
Online resources:
Contents:
Part I. Introduction -- 1. What are Machine and Deep Learning? -- 2. Computational Learning Basics -- 3. Overview of Conventional Machine Learning Methods -- 4. Overview of Deep Machine Learning Methods -- 5. Quantum Computing for Machine Learning -- 6. Performance Evaluation -- 7. Software Tools for Machine and Deep learning -- 8. Data sharing, protection and bioethics -- Part II. Machine Learning for Medical Image Analysis -- 9. Detection of Cancer Lesions from Imaging -- 10. Diagnosis of Malignant and Benign Tumours -- 11. Auto-contouring for image-guidance and treatment planning -- Part III. Machine Learning for Treatment planning & Delivery -- 12. Quality Assurance and error prediction -- 13. Knowledge-based treatment planning -- 14. Intelligent respiratory motion management -- Part IV. Machine Learning for Outcomes Modeling and Decision Support -- 15. Prediction of oncology treatment outcomes -- 16. Radiomics and radiogenomics -- 17. Modelling of Radiotherapy Response (TCP/NTCP) -- 18. Smart adaptive treatment strategies -- 19. Machine learning in clinical trials.
Summary: This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities. .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Notes Date due Barcode
E-Book E-Book Tıp Fakültesi Medikal Kütüphane Tıp Fakültesi Medikal Kütüphane E-Kitap Koleksiyonu WN 250EBK (Browse shelf(Opens below)) 1 Geçerli değil-e-Kitap / Not applicable-e-Book EBK02327

Part I. Introduction -- 1. What are Machine and Deep Learning? -- 2. Computational Learning Basics -- 3. Overview of Conventional Machine Learning Methods -- 4. Overview of Deep Machine Learning Methods -- 5. Quantum Computing for Machine Learning -- 6. Performance Evaluation -- 7. Software Tools for Machine and Deep learning -- 8. Data sharing, protection and bioethics -- Part II. Machine Learning for Medical Image Analysis -- 9. Detection of Cancer Lesions from Imaging -- 10. Diagnosis of Malignant and Benign Tumours -- 11. Auto-contouring for image-guidance and treatment planning -- Part III. Machine Learning for Treatment planning & Delivery -- 12. Quality Assurance and error prediction -- 13. Knowledge-based treatment planning -- 14. Intelligent respiratory motion management -- Part IV. Machine Learning for Outcomes Modeling and Decision Support -- 15. Prediction of oncology treatment outcomes -- 16. Radiomics and radiogenomics -- 17. Modelling of Radiotherapy Response (TCP/NTCP) -- 18. Smart adaptive treatment strategies -- 19. Machine learning in clinical trials.

This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities. .

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.