Image from Google Jackets

Automatic SIMD Vectorization of SSA-based Control Flow Graphs / by Ralf Karrenberg.

By: Contributor(s): Material type: TextTextLanguage: İngilizce Publisher: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2015Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783658101138
Subject(s): LOC classification:
  • QA76.7-76.73
  • QA76.76.C65
Online resources: Summary: Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a variety of analyses and code generation techniques. He shows that this approach improves the performance of the generated code in a variety of use cases. Contents Introduction, Foundations & Terminology, Related Work SIMD Property Analyses Whole-Function Vectorization Dynamic Code Variants, Evaluation, Conclusion, Outlook Target Groups Computer science researchers and students working in data-parallel computing Software and compiler engineers in the fields high-performance computing and compiler construction About the Author Ralf Karrenberg received his PhD in computer science at Saarland University in 2015. His seminal research on compilation techniques for SIMD architectures found wide recognition in both academia and the CPU and GPU industry. Currently, he is working for NVIDIA in Berlin. Prior to that, he contributed to research and development for visual effects in blockbuster movies at Weta Digital, New Zealand.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane Merkez Kütüphane E-Kitap Koleksiyonu QA76.7-76.73EBK (Browse shelf(Opens below)) Geçerli değil-e-Kitap / Not applicable-e-Book EBK00140

Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a variety of analyses and code generation techniques. He shows that this approach improves the performance of the generated code in a variety of use cases. Contents Introduction, Foundations & Terminology, Related Work SIMD Property Analyses Whole-Function Vectorization Dynamic Code Variants, Evaluation, Conclusion, Outlook Target Groups Computer science researchers and students working in data-parallel computing Software and compiler engineers in the fields high-performance computing and compiler construction About the Author Ralf Karrenberg received his PhD in computer science at Saarland University in 2015. His seminal research on compilation techniques for SIMD architectures found wide recognition in both academia and the CPU and GPU industry. Currently, he is working for NVIDIA in Berlin. Prior to that, he contributed to research and development for visual effects in blockbuster movies at Weta Digital, New Zealand.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.