Image from Google Jackets

Practical Approaches to Causal Relationship Exploration / by Jiuyong Li, Lin Liu, Thuc Duy Le.

By: Contributor(s): Material type: TextTextLanguage: İngilizce Series: SpringerBriefs in Electrical and Computer EngineeringPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319144337
Subject(s): LOC classification:
  • Q334-342
Online resources:
Contents:
Introduction -- Local causal discovery with a simple PC algorithm -- A local causal discovery algorithm for high dimensional data -- Causal rule discovery with partial association test -- Causal rule discovery with cohort studies -- Experimental comparison and discussions.
Summary: This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane Merkez Kütüphane E-Kitap Koleksiyonu Q334-342EBK (Browse shelf(Opens below)) Geçerli değil-e-Kitap / Not applicable-e-Book EBK00757

Introduction -- Local causal discovery with a simple PC algorithm -- A local causal discovery algorithm for high dimensional data -- Causal rule discovery with partial association test -- Causal rule discovery with cohort studies -- Experimental comparison and discussions.

This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.