Image from Google Jackets

Moving Objects Detection Using Machine Learning [electronic resource] / by Navneet Ghedia, Chandresh Vithalani, Ashish M. Kothari, Rohit M. Thanki.

By: Contributor(s): Material type: TextTextLanguage: İngilizce Series: SpringerBriefs in Electrical and Computer EngineeringPublisher: Cham : Springer International Publishing : Imprint: Springer, 2022Edition: 1st ed. 2022Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030909109
Subject(s): LOC classification:
  • Q325.5
Online resources:
Contents:
Chapter1. Introduction -- Chapter2. Existing Research in Video Surveillance System -- Chapter3. Background Modeling -- Chapter4. Object Tracking -- Chapter5. Summary of Book.
Summary: This book shows how machine learning can detect moving objects in a digital video stream. The authors present different background subtraction approaches, foreground segmentation, and object tracking approaches to accomplish this. They also propose an algorithm that considers a multimodal background subtraction approach that can handle a dynamic background and different constraints. The authors show how the proposed algorithm is able to detect and track 2D & 3D objects in monocular sequences for both indoor and outdoor surveillance environments and at the same time, also able to work satisfactorily in a dynamic background and with challenging constraints. In addition, the shows how the proposed algorithm makes use of parameter optimization and adaptive threshold techniques as intrinsic improvements of the Gaussian Mixture Model. The presented system in the book is also able to handle partial occlusion during object detection and tracking. All the presented work and evaluations were carried out in offline processing with the computation done by a single laptop computer with MATLAB serving as software environment.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane Merkez Kütüphane E-Kitap Koleksiyonu Q325.5EBK (Browse shelf(Opens below)) 1 Geçerli değil-e-Kitap / Not applicable-e-Book EBK03290

Chapter1. Introduction -- Chapter2. Existing Research in Video Surveillance System -- Chapter3. Background Modeling -- Chapter4. Object Tracking -- Chapter5. Summary of Book.

This book shows how machine learning can detect moving objects in a digital video stream. The authors present different background subtraction approaches, foreground segmentation, and object tracking approaches to accomplish this. They also propose an algorithm that considers a multimodal background subtraction approach that can handle a dynamic background and different constraints. The authors show how the proposed algorithm is able to detect and track 2D & 3D objects in monocular sequences for both indoor and outdoor surveillance environments and at the same time, also able to work satisfactorily in a dynamic background and with challenging constraints. In addition, the shows how the proposed algorithm makes use of parameter optimization and adaptive threshold techniques as intrinsic improvements of the Gaussian Mixture Model. The presented system in the book is also able to handle partial occlusion during object detection and tracking. All the presented work and evaluations were carried out in offline processing with the computation done by a single laptop computer with MATLAB serving as software environment.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.