Derecelendirilmiş ve dalgalı çok katmanlı fotonik yapılarda ışığın etkin kontrolü / Ceren Babayiğit ; thesis advisor Hamza Kurt.

By: Babayiğit, Ceren [author]
Contributor(s): Kurt, Hamza [advisor] | TOBB Ekonomi ve Teknoloji Üniversitesi. Fen Bilimleri Enstitüsü
Material type: TextTextLanguage: Türkçe Publisher: Ankara : TOBB ETÜ Fen Bilimleri Enstitüsü, 2020Description: xv, 81 pages : illustrations ; 29 cmContent type: text Media type: unmediated Carrier type: volumeOther title: Effective control of light in gradient and wavy multilayered photonic structures [Parallel title]Subject(s): Tezler, Akademik | Fotonik kristal | Derecelendirilmiş kırılma indisli ortamlar | Geometrik optik | Görünmezlik | Luneburg lens | Nematik sıvı kristaller | Ayarlanabilir optik | Işın yönlendirme | Afokal lens | Uzamsal filtreleme | Fiziksel buhar biriktirme | Yüzey ızgarası | Çok katmanlı yapılar | Photonic crystals | Graded index media | Geometrical optics | Cloaking | Luneburg lens | Nematic liquid crystals | Adaptive optics | Beam steering | Afokal lens | Spatial filtering | Physical vapour deposition | Surface grating | Multilayer structuresDissertation note: Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2020 Summary: Fotonik, fotonik kristallerin periyodik olarak düzenlenmesi ile oluşturulan yapıların optik özelliklerini analiz ve kontrol etmemizi sağlayan, ışık akışını manipüle etmeye dayalı bir bilim dalıdır. Lord Rayleigh'nin 1887 yılında yaptığı çalışmalarla temelleri atılan bu bilim dalı, 20. yüzyılda devrim yaratan yeni teknolojilerin oluşumunda önemli bir role sahiptir. Burada, fotonik kristallerin zamansal ve uzamsal dağılım özellikleri kullanılarak, etkin yapı tasarımları ile ışık akışının kontrolü sağlanabilmekte ve gelişmiş optiksel özellikler elde edilebilmektedir. Bu tez çalışmasında, iki boyutlu fotonik kristal yapıları ile optik görünmezlik, ışın yönlendirme, afokal yakınlaştırma/uzaklaştırma ve uzamsal filtreleme gibi optiksel uygulamalar için yapı tasarımları önerilmiştir. Bu bağlamda, ilk olarak, derecelendirilmiş kırılma indisi (DKİ) yaklaşımı incelenerek dörtlü Luneburg lens sistemine dayalı yönlü görünmezlik pelerini tasarımı sunulmuştur. Burada, gelen ışığın lenslerin kesiştiği ara bölge ile herhangi bir etkileşime girmeden geçtiği ve dolayısıyla gizlenmek istenen nesnenin bu karanlık bölgeye yerleştirilerek optiksel olarak saklanabileceği gösterilmiştir. Daha sonra, DKİ ortamları sıvı kristaller (SK) ile birleştirilerek herhangi bir mekanik hareket olmadan aktif bir şekilde kontrol edilebilen ışın yönlendirici ve afokal lens sistemi tasarımı yapılmıştır. Gelen ışığı aktif bir şekilde kontrol edebilmek için halka şeklindeki polimer çubuklara SK infiltre edilmiş ve SK'lerin yapısal özellikleri sayesinde dışarıdan uygulanan voltaj ile DKİ ortamının etkin kırılma indisi profili değiştirilmiştir. Bu bağlamda, a/λ = [0.10-0.15] ve a/λ = [0.15-0.25] normalize çalışma frekanslarında ∆θout = 44° açı değişime sahip bir ışın yönlendirici ve x 2.15 ışın çapı büyütme özelliğine sahip afokal lens sistemi tasarımı elde edilmiştir. Burada a örgü sabiti ve λ gelen ışığın dalga boyudur. Bu bölümde tasarımı yapılan yapılar geometrik optik ile analitik olarak incelendikten sonra, sayısal analizleri zaman alanında sonlu farklar metodu (FDTD) ile yapılmıştır. Gizleme etkisi ise üç boyutlu yazıcı tekniği ile üretilen yapının mikrodalga deneyleri yapılarak doğrulanmıştır. Tezin bir sonraki bölümünde ise Bragg konfigürasyonunda açısal filtreleme elde edebilmek için dalgalı çok katmanlı fotonik yapıların FDTD simülasyonları ile tasarım ve analizi sunulmuştur. Uzamsal filtrelemenin daha önce gösterilmiş olduğu Laue konfigürasyonuna kıyasla, Bragg konfigürasyonunda tasarlanan yapıların üretimi teknolojik olarak daha zordur, çünkü bu tür yapıların boylamsal periyotları çalışılan dalga boyundan daha kısa olmalıdır. Bu zorluğa bir çözüm olarak, tasarlanan çok katmanlı yapılar, fiziksel buhar birikimi ile üretilmiş ve deneysel doğrulaması görünür ışık tayfında yapılmıştır.Summary: Photonics the science dealing with manipulation the flow of light, enables us to analyse and control the optical properties of engineered structures created, for instance, by periodic arrangement of photonic crystals. This branch of science, which laid its foundations by the seminal works of Lord Rayleigh in 1887, has had an important role in the formation of new technologies that revolutionized the 20th century. Here, by using the temporal and spatial dispersions of photonic crystals, direct control over the flow of light can be achieved with judiciously designed effective structures and, in result, advanced optical properties can be obtained. In this thesis, photonic structure designs for optical applications such as optical invisibility, beam steering, afocal zooming and spatial filtering are proposed by using two dimensional photonic crystals. In this context, first, a directional invisibility cloak design based on quadruple Luneburg lens system has been presented by examining various graded refractive index (GRIN) media. Specially, we show that an incident light can be rerouted around the region between junctions of the lenses without any direct interaction and hence, an object can be placed inside that dark zone to be rendered invisible. Thereafter, GRIN photonic crystals are combined with nematic liquid crystals (LCs) to design actively controllable beam steering and afocal lens systems without any mechanical movements. In order to actively control the incoming light, the polymer annular rods are infiltrated with nematic LCs and owing to the structural properties of the LCs, the effective refractive index profile of the GRIN medium is modified with an externally applied voltage. In this regard, beam steering with an angle change of ∆θout = 44° and a light magnification with maximum x 2.15 are obtained within the operational frequency ranges of a/λ = [0.10–0.15] and a/λ = [0.15–0.25]. Here a is the lattice constant and λ is the incident wavelength. In this section, the proposed structures are examined analytically via geometrical optics and then their numerical analysis are performed with the finite difference method (FDTD) method. Moreover, the cloaking effect was confirmed by conducting microwave experiments with the structure produced by three-dimensional printing technique. In the next chapter of the thesis, the design and analysis of wavy multilayer photonic structures is presented to achieve angular filtering in the Bragg configuration. Compared to the Laue configuration, where spatial filtering was previously examined, structures designed in the Bragg configuration are technologically more challenging to fabricate since the longitudinal periods of such structures must be shorter than the operational wavelength. As a solution to this challenge, designed multi-layer structures are fabricated by physical vapor deposition and their experimental verification is conducted in the visible light spectrum.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Collection Call number Copy number Status Date due Barcode
Thesis Thesis Merkez Kütüphane
Tez Koleksiyonu / Thesis Collection
Merkez Kütüphane
Tezler TEZ TOBB FBE ELE YL’20 BAB (Browse shelf) 1 Ödünç Verilemez-Tez / Not For Loan-Thesis TZ01137

Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2020

Fotonik, fotonik kristallerin periyodik olarak düzenlenmesi ile oluşturulan yapıların optik özelliklerini analiz ve kontrol etmemizi sağlayan, ışık akışını manipüle etmeye dayalı bir bilim dalıdır. Lord Rayleigh'nin 1887 yılında yaptığı çalışmalarla temelleri atılan bu bilim dalı, 20. yüzyılda devrim yaratan yeni teknolojilerin oluşumunda önemli bir role sahiptir. Burada, fotonik kristallerin zamansal ve uzamsal dağılım özellikleri kullanılarak, etkin yapı tasarımları ile ışık akışının kontrolü sağlanabilmekte ve gelişmiş optiksel özellikler elde edilebilmektedir. Bu tez çalışmasında, iki boyutlu fotonik kristal yapıları ile optik görünmezlik, ışın yönlendirme, afokal yakınlaştırma/uzaklaştırma ve uzamsal filtreleme gibi optiksel uygulamalar için yapı tasarımları önerilmiştir. Bu bağlamda, ilk olarak, derecelendirilmiş kırılma indisi (DKİ) yaklaşımı incelenerek dörtlü Luneburg lens sistemine dayalı yönlü görünmezlik pelerini tasarımı sunulmuştur. Burada, gelen ışığın lenslerin kesiştiği ara bölge ile herhangi bir etkileşime girmeden geçtiği ve dolayısıyla gizlenmek istenen nesnenin bu karanlık bölgeye yerleştirilerek optiksel olarak saklanabileceği gösterilmiştir. Daha sonra, DKİ ortamları sıvı kristaller (SK) ile birleştirilerek herhangi bir mekanik hareket olmadan aktif bir şekilde kontrol edilebilen ışın yönlendirici ve afokal lens sistemi tasarımı yapılmıştır. Gelen ışığı aktif bir şekilde kontrol edebilmek için halka şeklindeki polimer çubuklara SK infiltre edilmiş ve SK'lerin yapısal özellikleri sayesinde dışarıdan uygulanan voltaj ile DKİ ortamının etkin kırılma indisi profili değiştirilmiştir. Bu bağlamda, a/λ = [0.10-0.15] ve a/λ = [0.15-0.25] normalize çalışma frekanslarında ∆θout = 44° açı değişime sahip bir ışın yönlendirici ve x 2.15 ışın çapı büyütme özelliğine sahip afokal lens sistemi tasarımı elde edilmiştir. Burada a örgü sabiti ve λ gelen ışığın dalga boyudur. Bu bölümde tasarımı yapılan yapılar geometrik optik ile analitik olarak incelendikten sonra, sayısal analizleri zaman alanında sonlu farklar metodu (FDTD) ile yapılmıştır. Gizleme etkisi ise üç boyutlu yazıcı tekniği ile üretilen yapının mikrodalga deneyleri yapılarak doğrulanmıştır. Tezin bir sonraki bölümünde ise Bragg konfigürasyonunda açısal filtreleme elde edebilmek için dalgalı çok katmanlı fotonik yapıların FDTD simülasyonları ile tasarım ve analizi sunulmuştur. Uzamsal filtrelemenin daha önce gösterilmiş olduğu Laue konfigürasyonuna kıyasla, Bragg konfigürasyonunda tasarlanan yapıların üretimi teknolojik olarak daha zordur, çünkü bu tür yapıların boylamsal periyotları çalışılan dalga boyundan daha kısa olmalıdır. Bu zorluğa bir çözüm olarak, tasarlanan çok katmanlı yapılar, fiziksel buhar birikimi ile üretilmiş ve deneysel doğrulaması görünür ışık tayfında yapılmıştır.

Photonics the science dealing with manipulation the flow of light, enables us to analyse and control the optical properties of engineered structures created, for instance, by periodic arrangement of photonic crystals. This branch of science, which laid its foundations by the seminal works of Lord Rayleigh in 1887, has had an important role in the formation of new technologies that revolutionized the 20th century. Here, by using the temporal and spatial dispersions of photonic crystals, direct control over the flow of light can be achieved with judiciously designed effective structures and, in result, advanced optical properties can be obtained. In this thesis, photonic structure designs for optical applications such as optical invisibility, beam steering, afocal zooming and spatial filtering are proposed by using two dimensional photonic crystals. In this context, first, a directional invisibility cloak design based on quadruple Luneburg lens system has been presented by examining various graded refractive index (GRIN) media. Specially, we show that an incident light can be rerouted around the region between junctions of the lenses without any direct interaction and hence, an object can be placed inside that dark zone to be rendered invisible. Thereafter, GRIN photonic crystals are combined with nematic liquid crystals (LCs) to design actively controllable beam steering and afocal lens systems without any mechanical movements. In order to actively control the incoming light, the polymer annular rods are infiltrated with nematic LCs and owing to the structural properties of the LCs, the effective refractive index profile of the GRIN medium is modified with an externally applied voltage. In this regard, beam steering with an angle change of ∆θout = 44° and a light magnification with maximum x 2.15 are obtained within the operational frequency ranges of a/λ = [0.10–0.15] and a/λ = [0.15–0.25]. Here a is the lattice constant and λ is the incident wavelength. In this section, the proposed structures are examined analytically via geometrical optics and then their numerical analysis are performed with the finite difference method (FDTD) method. Moreover, the cloaking effect was confirmed by conducting microwave experiments with the structure produced by three-dimensional printing technique. In the next chapter of the thesis, the design and analysis of wavy multilayer photonic structures is presented to achieve angular filtering in the Bragg configuration. Compared to the Laue configuration, where spatial filtering was previously examined, structures designed in the Bragg configuration are technologically more challenging to fabricate since the longitudinal periods of such structures must be shorter than the operational wavelength. As a solution to this challenge, designed multi-layer structures are fabricated by physical vapor deposition and their experimental verification is conducted in the visible light spectrum.

There are no comments for this item.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.