Image from Google Jackets

Joint replacement technology / edited by Peter A. Revell.

Contributor(s): Material type: TextTextLanguage: İngilizce Series: Woodhead Publishing Series in Biomaterials SerPublisher: San Diego : Elsevier Science & Technology, 2021Copyright date: ©2021Edition: Third editionDescription: 1 online resource (726 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128210833
Subject(s): Genre/Form: NLM classification:
  • WE 312
Online resources:
Contents:
Intro -- Joint Replacement Technology -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Biomechanics for joint replacement -- 1.1. Introduction -- 1.2. Introduction to biomechanics -- 1.2.1. Kinematics, degrees of freedom and constraints -- 1.2.2. Kinetics -- 1.2.2.1. Basic Newtonian mechanics -- 1.2.2.2. Vectors and equilibrium -- 1.2.2.3. Dynamics -- 1.2.2.4. Rotations and moments -- 1.2.3. Equilibrium of a joint -- 1.2.4. Applications to joint mechanics -- 1.2.4.1. Elbow flexion -- 1.2.4.2. Hip - Single-legged stance -- 1.3. Mechanical properties of materials -- 1.3.1. Stress and strain -- 1.3.2. Failure and fatigue -- 1.3.2.1. Fatigue -- 1.3.2.2. Biological and nonmetallic materials -- 1.4. Lower limb joints -- 1.4.1. Ground reaction forces and joint moments during walking -- 1.4.2. Hip -- 1.4.2.1. Basic anatomy and kinematics -- 1.4.2.2. Joint kinetics -- 1.4.3. Tibiofemoral joint -- 1.4.3.1. Basic anatomy and kinematics -- 1.4.3.2. Joint kinetics -- 1.4.4. Patellofemoral joint -- 1.4.5. Ankle -- 1.4.5.1. Basic anatomy and kinematics -- 1.4.5.2. Joint kinetics -- 1.5. Upper limb joints -- 1.5.1. Shoulder -- 1.5.1.1. Basic anatomy and kinematics -- 1.5.1.2. Joint kinetics -- 1.5.2. Elbow -- 1.5.2.1. Basic anatomy and kinematics -- 1.5.2.2. Joint kinetics -- 1.6. Temporomandibular joint -- 1.6.1. Basic anatomy and kinematics -- 1.6.2. Joint kinetics -- 1.7. Intervertebral joints -- 1.7.1. Basic anatomy and kinematics -- 1.7.2. Joint kinetics -- 1.8. Conclusion -- References -- Further reading -- Chapter 2: Tribology in joint replacement* -- 2.1. Introduction -- 2.1.1. Tribology -- 2.1.2. Surfaces and roughness -- 2.1.3. Contact mechanics -- 2.1.4. Friction -- 2.1.5. Wear -- 2.1.6. Lubrication -- 2.2. Theoretical tribological studies -- 2.2.1. Contact mechanics -- 2.2.2. Lubrication -- 2.2.3. Wear.
2.3. Experimental tribological studies -- 2.3.1. Surface topography of bearing surfaces used for artificial joints -- 2.3.2. Friction and lubrication -- 2.3.3. Wear -- 2.3.3.1. UHMWPE: Cross-linking -- 2.3.3.2. Ceramic-on-ceramic: Importance of microseparation -- 2.3.3.3. Metal-on-metal: Lubrication dependent -- 2.3.3.4. Other novel bearing combinations -- 2.3.3.5. Articular cartilage and meniscus repair and replacement-Low friction coefficient -- 2.4. Issues of tribology for joint replacements and future developments -- 2.5. Sources of further information and advice -- References -- Further reading -- Chapter 3: Metals for joint replacement -- 3.1. Introduction -- 3.1.1. Classification -- 3.2. Metals -- 3.2.1. Overview of metals -- 3.2.2. Biomechanical properties -- 3.2.3. Corrosion properties -- 3.3. Metals used in joint replacements -- 3.3.1. Surgical stainless steel -- 3.3.2. Titanium and its alloys -- 3.3.3. Cobalt-based alloys -- 3.3.4. Tantalum -- 3.3.5. Corrosion resistance of metals used in joint replacements -- 3.4. Design and failure modes of joint replacements -- 3.4.1. Design and articulating surfaces -- 3.4.2. Failures of joint replacements -- 3.4.2.1. Septic failures of joint replacements -- Implant-related deep infections -- Surfaces -- 3.4.2.2. Aseptic failures of joint replacements -- Material-related failures -- Wear of the bearing -- Material breakage -- Corrosion-related failures -- Frictional torque-related failures -- The role of metal ions released due to material failures -- The non-material-related failures -- Implant malposition -- Soft tissue derangement -- Instability -- Referred pain -- 3.5. Clinical success of joint replacements -- 3.5.1. How to evaluate statistical outcome studies -- 3.5.2. Cemented fixation -- Stainless steel -- Cobalt-chromium alloy -- Titanium alloys -- 3.5.3. Cementless fixation.
3.5.3.1. Titanium alloys -- 3.5.3.2. Modular stems -- 3.5.3.3. Short stems -- 3.5.3.4. Cobalt-chromium alloy -- 3.6. Future trends -- 3.6.1. Resurfacing implants -- 3.6.2. Patient-specific implants, custom-made revision and special implants -- 3.6.3. Isoelasticity -- 3.6.4. Coating of implants -- References -- Chapter 4: Ceramics for joint replacement -- 4.1. Introduction -- 4.2. Material and mechanical properties of ceramics -- 4.2.1. Alumina -- 4.2.2. Zirconia -- 4.2.3. Composite ceramics -- 4.3. Ceramics in total hip arthroplasty -- 4.3.1. Ceramic-on-polyethylene bearings -- 4.3.2. Ceramic-on-ceramic bearings -- 4.3.3. Large ceramic heads in total hip replacement -- 4.3.4. Ceramic heads in revision total hip arthroplasty -- 4.3.5. Ceramics in hip resurfacing -- 4.4. Ceramics in total knee arthroplasty -- 4.5. Ceramic coatings -- 4.6. Conclusion -- References -- Chapter 5: Pyrocarbon for joint replacement -- 5.1. What is pyrolytic carbon? -- 5.2. Manufacturing process -- 5.3. Structural characteristics -- 5.4. Beneficial performance characteristics as a material for arthroplasty -- 5.4.1. Modulus of elasticity, strength and fatigue resistance -- 5.4.2. Biocompatibility and tribology -- 5.4.3. Wear characteristics -- 5.5. Bone prosthesis interface -- 5.6. Conclusion -- References -- Chapter 6: Joint bearing surfaces and replacement joint design* -- 6.1. Introduction -- 6.2. Articulating surfaces in natural joints -- 6.3. Demands for the bearing surfaces -- 6.4. Different solutions available for artificial bearing surfaces -- 6.4.1. Wear and lubrication of bearing surfaces -- 6.4.2. Polymers on bearing surfaces -- 6.4.3. Metal-on-metal bearing surfaces -- 6.4.4. Ceramic-on-ceramic bearing surfaces -- 6.4.5. Coatings for bearing surfaces -- 6.5. Special concepts and designs for bearing surfaces -- 6.6. Comparison of bearing surface solutions.
6.7. Future trends -- References -- Further reading -- Chapter 7: Cementless fixation techniques and problems -- 7.1. Introduction -- 7.2. Cementless fixation -- 7.2.1. Usage data -- 7.2.2. Hip -- 7.2.3. Knee -- 7.2.4. Initial stability -- 7.3. Osseous integration of cementless implants -- 7.3.1. Implant stability, micromotion and interface gaps -- 7.3.2. Surface geometry characteristics -- 7.3.3. Biological compatibility of materials -- 7.3.4. Bioactive surface coatings -- 7.3.5. Physiology of osseointegration -- 7.3.6. Mechanical properties of the implant -- 7.4. Uncemented implants and revision surgery -- 7.4.1. Cementless fixation in the presence of osteoporosis -- 7.4.2. Implant infection in the presence of cement -- 7.4.3. Benefits of uncemented prosthesis use: Reductions in time, cost and complications -- 7.4.4. Disadvantage of uncemented prosthesis use: Blood loss -- 7.4.5. Economic feasibility of modern uncemented implants -- 7.4.6. Future trends -- References -- Chapter 8: Acrylic cements for bone fixation in joint replacement -- 8.1. Introduction -- 8.1.1. Acrylic bone cements - History and evolution -- 8.1.2. Clinical application and function -- 8.2. Composition -- 8.2.1. Storage -- 8.2.2. Polymer powder/liquid monomer ratio -- 8.2.3. Polymerisation reaction -- 8.2.4. Polymerisation heat -- 8.2.5. Polymerisation shrinkage -- 8.2.6. Molecular weight and sterilisation -- 8.2.7. Residual monomer and monomer release -- 8.2.8. Viscosity and handling properties -- 8.2.9. Antibiotics in PMMA bone cement -- 8.2.10. Radiopacifier in PMMA bone cement -- 8.2.11. Mechanical properties -- 8.3. Mixing methods -- 8.4. Joint replacement cementing technique -- 8.4.1. Cemented hip replacement -- 8.4.1.1. Acetabular cementing -- 8.4.1.2. Femoral cementing -- 8.4.2. Cemented knee replacement -- 8.4.3. Shoulder and ankle replacement.
8.4.3.1. Role of bone cement in infection -- 8.4.4. Factors affecting antibiotic elution -- 8.4.5. Methods of mixing antibiotic-loaded cement -- 8.5. Complications associated with PMMA bone cement -- 8.5.1. Aseptic loosening -- 8.5.2. Infection -- 8.5.3. Risk of fat embolism -- 8.5.4. Bone cement implantation syndrome -- 8.5.5. Wear particles -- 8.6. Conclusion -- References -- Chapter 9: The healing response to implants used in joint replacement* -- 9.1. Introduction -- 9.2. Immediate response to prosthesis placement -- 9.3. Remodelling of bone around implants -- 9.4. The cemented joint prosthesis -- 9.5. The uncemented prosthetic joint component -- 9.5.1. Porous metal surfaces -- 9.5.2. Porous tantalum -- 9.5.3. Polymer in pegs, screws and spinal devices -- 9.6. Bioactive surfaces on prostheses -- 9.7. Adjunctive methods or treatments and their effects -- 9.7.1. Bone grafts in joint replacement -- 9.7.2. Bone substitute materials -- 9.7.3. Enhancement of bone formation -- 9.8. Conclusion -- References -- Chapter 10: Biological causes of prosthetic joint failure* -- 10.1. Introduction -- 10.2. Infection -- 10.2.1. Imaging methods -- 10.2.2. Blood tests in the diagnosis of periprosthetic infection -- 10.2.3. Joint fluid examination -- 10.2.4. The role of histopathological examination of tissue samples -- 10.2.5. Microbiological examination of tissue samples -- 10.3. Aseptic loosening -- 10.4. The isolation and characterisation of wear particles from tissues -- 10.4.1. Conventional light microscopy -- 10.4.2. Ultrastructural studies: submicroscopic and nanometre-sized particles -- 10.5. The cellular reaction to particulate wear debris -- 10.5.1. The synovial lining cells of joints and at the implant-bone interface -- 10.5.2. The spread of particles to local peri-implant tissues -- 10.6. The role of macrophages and multinucleate giant cells (MNGCs).
10.7. Bone resorption and wear debris: osteoclasts, macrophages and MNGC.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Tıp Fakültesi Medikal Kütüphane Tıp Fakültesi Medikal Kütüphane E-Kitap Koleksiyonu WE 312 J74 2021EBK (Browse shelf(Opens below)) Geçerli değil-e-Kitap / Not applicable-e-Book BMM EBK01195

Includes bibliographical references and index.

Intro -- Joint Replacement Technology -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Biomechanics for joint replacement -- 1.1. Introduction -- 1.2. Introduction to biomechanics -- 1.2.1. Kinematics, degrees of freedom and constraints -- 1.2.2. Kinetics -- 1.2.2.1. Basic Newtonian mechanics -- 1.2.2.2. Vectors and equilibrium -- 1.2.2.3. Dynamics -- 1.2.2.4. Rotations and moments -- 1.2.3. Equilibrium of a joint -- 1.2.4. Applications to joint mechanics -- 1.2.4.1. Elbow flexion -- 1.2.4.2. Hip - Single-legged stance -- 1.3. Mechanical properties of materials -- 1.3.1. Stress and strain -- 1.3.2. Failure and fatigue -- 1.3.2.1. Fatigue -- 1.3.2.2. Biological and nonmetallic materials -- 1.4. Lower limb joints -- 1.4.1. Ground reaction forces and joint moments during walking -- 1.4.2. Hip -- 1.4.2.1. Basic anatomy and kinematics -- 1.4.2.2. Joint kinetics -- 1.4.3. Tibiofemoral joint -- 1.4.3.1. Basic anatomy and kinematics -- 1.4.3.2. Joint kinetics -- 1.4.4. Patellofemoral joint -- 1.4.5. Ankle -- 1.4.5.1. Basic anatomy and kinematics -- 1.4.5.2. Joint kinetics -- 1.5. Upper limb joints -- 1.5.1. Shoulder -- 1.5.1.1. Basic anatomy and kinematics -- 1.5.1.2. Joint kinetics -- 1.5.2. Elbow -- 1.5.2.1. Basic anatomy and kinematics -- 1.5.2.2. Joint kinetics -- 1.6. Temporomandibular joint -- 1.6.1. Basic anatomy and kinematics -- 1.6.2. Joint kinetics -- 1.7. Intervertebral joints -- 1.7.1. Basic anatomy and kinematics -- 1.7.2. Joint kinetics -- 1.8. Conclusion -- References -- Further reading -- Chapter 2: Tribology in joint replacement* -- 2.1. Introduction -- 2.1.1. Tribology -- 2.1.2. Surfaces and roughness -- 2.1.3. Contact mechanics -- 2.1.4. Friction -- 2.1.5. Wear -- 2.1.6. Lubrication -- 2.2. Theoretical tribological studies -- 2.2.1. Contact mechanics -- 2.2.2. Lubrication -- 2.2.3. Wear.

2.3. Experimental tribological studies -- 2.3.1. Surface topography of bearing surfaces used for artificial joints -- 2.3.2. Friction and lubrication -- 2.3.3. Wear -- 2.3.3.1. UHMWPE: Cross-linking -- 2.3.3.2. Ceramic-on-ceramic: Importance of microseparation -- 2.3.3.3. Metal-on-metal: Lubrication dependent -- 2.3.3.4. Other novel bearing combinations -- 2.3.3.5. Articular cartilage and meniscus repair and replacement-Low friction coefficient -- 2.4. Issues of tribology for joint replacements and future developments -- 2.5. Sources of further information and advice -- References -- Further reading -- Chapter 3: Metals for joint replacement -- 3.1. Introduction -- 3.1.1. Classification -- 3.2. Metals -- 3.2.1. Overview of metals -- 3.2.2. Biomechanical properties -- 3.2.3. Corrosion properties -- 3.3. Metals used in joint replacements -- 3.3.1. Surgical stainless steel -- 3.3.2. Titanium and its alloys -- 3.3.3. Cobalt-based alloys -- 3.3.4. Tantalum -- 3.3.5. Corrosion resistance of metals used in joint replacements -- 3.4. Design and failure modes of joint replacements -- 3.4.1. Design and articulating surfaces -- 3.4.2. Failures of joint replacements -- 3.4.2.1. Septic failures of joint replacements -- Implant-related deep infections -- Surfaces -- 3.4.2.2. Aseptic failures of joint replacements -- Material-related failures -- Wear of the bearing -- Material breakage -- Corrosion-related failures -- Frictional torque-related failures -- The role of metal ions released due to material failures -- The non-material-related failures -- Implant malposition -- Soft tissue derangement -- Instability -- Referred pain -- 3.5. Clinical success of joint replacements -- 3.5.1. How to evaluate statistical outcome studies -- 3.5.2. Cemented fixation -- Stainless steel -- Cobalt-chromium alloy -- Titanium alloys -- 3.5.3. Cementless fixation.

3.5.3.1. Titanium alloys -- 3.5.3.2. Modular stems -- 3.5.3.3. Short stems -- 3.5.3.4. Cobalt-chromium alloy -- 3.6. Future trends -- 3.6.1. Resurfacing implants -- 3.6.2. Patient-specific implants, custom-made revision and special implants -- 3.6.3. Isoelasticity -- 3.6.4. Coating of implants -- References -- Chapter 4: Ceramics for joint replacement -- 4.1. Introduction -- 4.2. Material and mechanical properties of ceramics -- 4.2.1. Alumina -- 4.2.2. Zirconia -- 4.2.3. Composite ceramics -- 4.3. Ceramics in total hip arthroplasty -- 4.3.1. Ceramic-on-polyethylene bearings -- 4.3.2. Ceramic-on-ceramic bearings -- 4.3.3. Large ceramic heads in total hip replacement -- 4.3.4. Ceramic heads in revision total hip arthroplasty -- 4.3.5. Ceramics in hip resurfacing -- 4.4. Ceramics in total knee arthroplasty -- 4.5. Ceramic coatings -- 4.6. Conclusion -- References -- Chapter 5: Pyrocarbon for joint replacement -- 5.1. What is pyrolytic carbon? -- 5.2. Manufacturing process -- 5.3. Structural characteristics -- 5.4. Beneficial performance characteristics as a material for arthroplasty -- 5.4.1. Modulus of elasticity, strength and fatigue resistance -- 5.4.2. Biocompatibility and tribology -- 5.4.3. Wear characteristics -- 5.5. Bone prosthesis interface -- 5.6. Conclusion -- References -- Chapter 6: Joint bearing surfaces and replacement joint design* -- 6.1. Introduction -- 6.2. Articulating surfaces in natural joints -- 6.3. Demands for the bearing surfaces -- 6.4. Different solutions available for artificial bearing surfaces -- 6.4.1. Wear and lubrication of bearing surfaces -- 6.4.2. Polymers on bearing surfaces -- 6.4.3. Metal-on-metal bearing surfaces -- 6.4.4. Ceramic-on-ceramic bearing surfaces -- 6.4.5. Coatings for bearing surfaces -- 6.5. Special concepts and designs for bearing surfaces -- 6.6. Comparison of bearing surface solutions.

6.7. Future trends -- References -- Further reading -- Chapter 7: Cementless fixation techniques and problems -- 7.1. Introduction -- 7.2. Cementless fixation -- 7.2.1. Usage data -- 7.2.2. Hip -- 7.2.3. Knee -- 7.2.4. Initial stability -- 7.3. Osseous integration of cementless implants -- 7.3.1. Implant stability, micromotion and interface gaps -- 7.3.2. Surface geometry characteristics -- 7.3.3. Biological compatibility of materials -- 7.3.4. Bioactive surface coatings -- 7.3.5. Physiology of osseointegration -- 7.3.6. Mechanical properties of the implant -- 7.4. Uncemented implants and revision surgery -- 7.4.1. Cementless fixation in the presence of osteoporosis -- 7.4.2. Implant infection in the presence of cement -- 7.4.3. Benefits of uncemented prosthesis use: Reductions in time, cost and complications -- 7.4.4. Disadvantage of uncemented prosthesis use: Blood loss -- 7.4.5. Economic feasibility of modern uncemented implants -- 7.4.6. Future trends -- References -- Chapter 8: Acrylic cements for bone fixation in joint replacement -- 8.1. Introduction -- 8.1.1. Acrylic bone cements - History and evolution -- 8.1.2. Clinical application and function -- 8.2. Composition -- 8.2.1. Storage -- 8.2.2. Polymer powder/liquid monomer ratio -- 8.2.3. Polymerisation reaction -- 8.2.4. Polymerisation heat -- 8.2.5. Polymerisation shrinkage -- 8.2.6. Molecular weight and sterilisation -- 8.2.7. Residual monomer and monomer release -- 8.2.8. Viscosity and handling properties -- 8.2.9. Antibiotics in PMMA bone cement -- 8.2.10. Radiopacifier in PMMA bone cement -- 8.2.11. Mechanical properties -- 8.3. Mixing methods -- 8.4. Joint replacement cementing technique -- 8.4.1. Cemented hip replacement -- 8.4.1.1. Acetabular cementing -- 8.4.1.2. Femoral cementing -- 8.4.2. Cemented knee replacement -- 8.4.3. Shoulder and ankle replacement.

8.4.3.1. Role of bone cement in infection -- 8.4.4. Factors affecting antibiotic elution -- 8.4.5. Methods of mixing antibiotic-loaded cement -- 8.5. Complications associated with PMMA bone cement -- 8.5.1. Aseptic loosening -- 8.5.2. Infection -- 8.5.3. Risk of fat embolism -- 8.5.4. Bone cement implantation syndrome -- 8.5.5. Wear particles -- 8.6. Conclusion -- References -- Chapter 9: The healing response to implants used in joint replacement* -- 9.1. Introduction -- 9.2. Immediate response to prosthesis placement -- 9.3. Remodelling of bone around implants -- 9.4. The cemented joint prosthesis -- 9.5. The uncemented prosthetic joint component -- 9.5.1. Porous metal surfaces -- 9.5.2. Porous tantalum -- 9.5.3. Polymer in pegs, screws and spinal devices -- 9.6. Bioactive surfaces on prostheses -- 9.7. Adjunctive methods or treatments and their effects -- 9.7.1. Bone grafts in joint replacement -- 9.7.2. Bone substitute materials -- 9.7.3. Enhancement of bone formation -- 9.8. Conclusion -- References -- Chapter 10: Biological causes of prosthetic joint failure* -- 10.1. Introduction -- 10.2. Infection -- 10.2.1. Imaging methods -- 10.2.2. Blood tests in the diagnosis of periprosthetic infection -- 10.2.3. Joint fluid examination -- 10.2.4. The role of histopathological examination of tissue samples -- 10.2.5. Microbiological examination of tissue samples -- 10.3. Aseptic loosening -- 10.4. The isolation and characterisation of wear particles from tissues -- 10.4.1. Conventional light microscopy -- 10.4.2. Ultrastructural studies: submicroscopic and nanometre-sized particles -- 10.5. The cellular reaction to particulate wear debris -- 10.5.1. The synovial lining cells of joints and at the implant-bone interface -- 10.5.2. The spread of particles to local peri-implant tissues -- 10.6. The role of macrophages and multinucleate giant cells (MNGCs).

10.7. Bone resorption and wear debris: osteoclasts, macrophages and MNGC.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.