Image from Google Jackets

Sinir ağı operatörlerinin toplanabilirliğinin incelenmesi / Can Türkün ; thesis advisor Oktay Duman.

By: Contributor(s): Material type: TextTextLanguage: Türkçe Publisher: Ankara : TOBB ETÜ Fen Bilimleri Enstitüsü, 2020Description: xii, 42 pages : illustrations ; 29 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Other title:
  • Investigation of summability of neural network operators [Parallel title]
Subject(s): Dissertation note: Tez (Doktora Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Aralık 2020 Summary: Bu doktora tezinde sinir ağı operatörlerinin yaklaşım özellikleri tüm yönleriyle ele alınmıştır. Mühendislikten tıpa, finanstan bilgisayar teknolojilerine kadar geniş bir yelpazede uygulama alanına sahip olan yapay sinir ağları, yaklaşımlar teorisinde ilk kez 1989 yılında Cybenko tarafından ele alınmış ve daha sonra 1997 yılında Cardaliaguet, Euvrard ve Anastassiou tarafından geliştirilmiştir. Sinir ağı operatörleri yardımıyla düzgün sürekli fonksiyonlara tüm reel eksen üzerinde noktasal olarak yaklaşılabileceği bilinmektedir. Fakat, sinir ağı operatörlerinin test fonksiyonlarındaki değerlerini analitik olarak hesaplamak genellikle oldukça güç olduğundan buradaki yaklaşımı elde edebilmek için klasik Korovkin Teoremi uygulamak da çoğu zaman kullanışlı değildir. Tez çalışmamızda ilk olarak çan tipindeki aktivasyon fonksiyonları yardımıyla tanımlanan lineer yapıdaki sinir ağı operatörlerini modifiye ederek düzgün sürekli fonksiyonlara düzgün olarak yaklaşmasını sağladık. Daha sonra da klasik yaklaşımın gerçeklenmediği durumlar için negatif olmayan regüler toplanabilme metotlarından yararlandık. Bilindiği üzere matematiksel analizde bir toplanabilme metodu, klasik anlamda yakınsak olmayan bir dizinin (veya bir serinin) yakınsamasını sağlamanın alternatif bir yöntemidir. Elde ettiğimiz yaklaşım sonuçlarını desteklemek üzere çeşitli matematiksel yazılım programlarından yararlanarak grafiksel gösterimler elde ettik. Daha sonra çalışmalarımızı çok değişkenli fonksiyonlar teorisi üzerine genişlettik. Tezin ikinci kısmında ise maksimum-çarpım işlemleri yardımıyla lineer olmayan yapıdaki sinir ağı operatörlerini ele aldık. Benzer yaklaşım sonuçlarının lineer olmayan durum için de geçerli olduğunu kanıtladık. Literatürde toplanabilme teorisi teknikleri yaklaşımlar teorisinde sıklıkla kullanılmış olmasına rağmen sinir ağı operatörlerinin yaklaşımında bildiğimiz kadarıyla henüz bu yönde bir çalışma yapılmamış olması tez çalışmamıza özgünlük katmaktadır.Summary: In this Ph.D. thesis, the approximation properties of neural network operators are examined in all aspects. Artificial neural networks, which have a wide range of applications from engineering to medical and finance to computer technologies, were first addressed in the approximation theory in 1989 by Cybenko and then developed by Cardaliaguet, Euvrard and Anastassiou in 1997. It is known that uniform continuous functions on the whole real axis can be pointwise approximated by means of neural network operators. However, since it is very difficult to calculate the values of neural network operators in test functions analytically, the classical Korovkin Theorem is often not useful. In our thesis, we have firstly modified the neural network operators having linear structure defined with the help of bell-type activation functions in order to obtain uniform approximation to uniform continuous functions. Later, we have used non-negative regular summability methods for situations where the classical approximation fails. As it is known, a summability method is an alternative formulation of convergence of a sequence (or a series) which is divergent in the conventional sense. We have also obtained graphical illustrations by using various mathematical software programs to support our results. We have also expanded our work on the theory of multivariable functions. In the second part of the thesis, we discussed the nonlinear neural network operators with the help of maximum-product operations. We have showed that similar approximation results are also valid for the nonlinear case. As far as we know, the approximation by neural network operators has not been conducted in this direction although the techniques of summability theory have been frequently used in the approximation theory, which gains the originality to our thesis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Thesis Thesis Merkez Kütüphane Tez Koleksiyonu / Thesis Collection Merkez Kütüphane Tezler TEZ TOBB FBE MAT Ph.D’20 TÜR (Browse shelf(Opens below)) 1 Ödünç Verilemez-Tez / Not For Loan-Thesis TZ01243

Tez (Doktora Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Aralık 2020

Bu doktora tezinde sinir ağı operatörlerinin yaklaşım özellikleri tüm yönleriyle ele alınmıştır. Mühendislikten tıpa, finanstan bilgisayar teknolojilerine kadar geniş bir yelpazede uygulama alanına sahip olan yapay sinir ağları, yaklaşımlar teorisinde ilk kez 1989 yılında Cybenko tarafından ele alınmış ve daha sonra 1997 yılında Cardaliaguet, Euvrard ve Anastassiou tarafından geliştirilmiştir. Sinir ağı operatörleri yardımıyla düzgün sürekli fonksiyonlara tüm reel eksen üzerinde noktasal olarak yaklaşılabileceği bilinmektedir. Fakat, sinir ağı operatörlerinin test fonksiyonlarındaki değerlerini analitik olarak hesaplamak genellikle oldukça güç olduğundan buradaki yaklaşımı elde edebilmek için klasik Korovkin Teoremi uygulamak da çoğu zaman kullanışlı değildir. Tez çalışmamızda ilk olarak çan tipindeki aktivasyon fonksiyonları yardımıyla tanımlanan lineer yapıdaki sinir ağı operatörlerini modifiye ederek düzgün sürekli fonksiyonlara düzgün olarak yaklaşmasını sağladık. Daha sonra da klasik yaklaşımın gerçeklenmediği durumlar için negatif olmayan regüler toplanabilme metotlarından yararlandık. Bilindiği üzere matematiksel analizde bir toplanabilme metodu, klasik anlamda yakınsak olmayan bir dizinin (veya bir serinin) yakınsamasını sağlamanın alternatif bir yöntemidir. Elde ettiğimiz yaklaşım sonuçlarını desteklemek üzere çeşitli matematiksel yazılım programlarından yararlanarak grafiksel gösterimler elde ettik. Daha sonra çalışmalarımızı çok değişkenli fonksiyonlar teorisi üzerine genişlettik. Tezin ikinci kısmında ise maksimum-çarpım işlemleri yardımıyla lineer olmayan yapıdaki sinir ağı operatörlerini ele aldık. Benzer yaklaşım sonuçlarının lineer olmayan durum için de geçerli olduğunu kanıtladık. Literatürde toplanabilme teorisi teknikleri yaklaşımlar teorisinde sıklıkla kullanılmış olmasına rağmen sinir ağı operatörlerinin yaklaşımında bildiğimiz kadarıyla henüz bu yönde bir çalışma yapılmamış olması tez çalışmamıza özgünlük katmaktadır.

In this Ph.D. thesis, the approximation properties of neural network operators are examined in all aspects. Artificial neural networks, which have a wide range of applications from engineering to medical and finance to computer technologies, were first addressed in the approximation theory in 1989 by Cybenko and then developed by Cardaliaguet, Euvrard and Anastassiou in 1997. It is known that uniform continuous functions on the whole real axis can be pointwise approximated by means of neural network operators. However, since it is very difficult to calculate the values of neural network operators in test functions analytically, the classical Korovkin Theorem is often not useful. In our thesis, we have firstly modified the neural network operators having linear structure defined with the help of bell-type activation functions in order to obtain uniform approximation to uniform continuous functions. Later, we have used non-negative regular summability methods for situations where the classical approximation fails. As it is known, a summability method is an alternative formulation of convergence of a sequence (or a series) which is divergent in the conventional sense. We have also obtained graphical illustrations by using various mathematical software programs to support our results. We have also expanded our work on the theory of multivariable functions. In the second part of the thesis, we discussed the nonlinear neural network operators with the help of maximum-product operations. We have showed that similar approximation results are also valid for the nonlinear case. As far as we know, the approximation by neural network operators has not been conducted in this direction although the techniques of summability theory have been frequently used in the approximation theory, which gains the originality to our thesis.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.