Image from Google Jackets

Derin öğrenme modelleri kullanılarak beyin tümörlerinin sınıflandırılması / Kaya Dağlı ; thesis advisor Osman Eroğul.

By: Contributor(s): Material type: TextTextLanguage: Türkçe Publisher: Ankara : TOBB ETÜ Fen Bilimleri Enstitüsü, 2021Description: xiv, 71 pages : illustrations ; 29 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Other title:
  • Classification of brain tumors via deep learning models [Parallel title]
Subject(s): Dissertation note: Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ocak 2021 Summary: Beyin tümörleri insan sağlığını önemli derecede etkileyebilmektedir. Bu tümörlerin yanlış teşhisi durumunda, müdahale için alınacak olan kararlar ve bireyin sağlık durumu verimli şekilde belirlenememektedir. Manyetik rezonans görüntülerinin bir hekim tarafından incelenmesi, beyin tümörlerinin belirlenmesinde en yaygın kullanılan yöntemdir. Beyin tümörlerinin çeşitliliğinden ve hekimlerin incelemesi gereken birçok görüntü olduğundan ötürü, bu yöntem hem insan hatalarına yatkındır hem de fazla zaman harcanmasına neden olmaktadır. Bu çalışmada, en yaygın görülen üç beyin tümörü çeşidi olan; Gliom, Meninjiyom ve Hipofiz bezi tümörlerinin derin öğrenme modelleri kullanılarak sınıflandırılması üzerine çalışılmıştır. Çalışmada doğruluk oranının yüksek olmasına önem verilirken, modellerin eğitimi için harcanan zaman da incelenmiştir. Bu sınıflandırma çalışması ile hekimlere yardımcı olabilecek bir sistem yaratmak amaçlanmıştır. Doğruluk oranı %90'a varan bir sistem oluşturulmuştur.Summary: Brain tumors threathen human health significantly. Misdiagnosis of these tumors decrease effectiveness of decisions for intervention and patient's state of health. The conventional method to differentiate brain tumors is by the inspection of magnetic resonance images by clinicians. Since there are various types of brain tumors and there are many images that clinicians should examine, this method is both prone to human errors and causes excessive time consumption. In this study, the most common brain tumor types; Glioma, Meningioma and Pituitary are classified using deep learning models. While the main objective of this study is to have a high rate of accuracy, the time spent is also examined. The aim of this study is to ease clinicians work load and have a time efficient classification system. The system which has been built has an accuracy up to 90%.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Thesis Thesis Merkez Kütüphane Tez Koleksiyonu / Thesis Collection Merkez Kütüphane Tezler TEZ TOBB FBE BMM YL’21 DAĞ (Browse shelf(Opens below)) 1 Ödünç Verilemez-Tez / Not For Loan-Thesis TZ01238

Tez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ocak 2021

Beyin tümörleri insan sağlığını önemli derecede etkileyebilmektedir. Bu tümörlerin yanlış teşhisi durumunda, müdahale için alınacak olan kararlar ve bireyin sağlık durumu verimli şekilde belirlenememektedir. Manyetik rezonans görüntülerinin bir hekim tarafından incelenmesi, beyin tümörlerinin belirlenmesinde en yaygın kullanılan yöntemdir. Beyin tümörlerinin çeşitliliğinden ve hekimlerin incelemesi gereken birçok görüntü olduğundan ötürü, bu yöntem hem insan hatalarına yatkındır hem de fazla zaman harcanmasına neden olmaktadır. Bu çalışmada, en yaygın görülen üç beyin tümörü çeşidi olan; Gliom, Meninjiyom ve Hipofiz bezi tümörlerinin derin öğrenme modelleri kullanılarak sınıflandırılması üzerine çalışılmıştır. Çalışmada doğruluk oranının yüksek olmasına önem verilirken, modellerin eğitimi için harcanan zaman da incelenmiştir. Bu sınıflandırma çalışması ile hekimlere yardımcı olabilecek bir sistem yaratmak amaçlanmıştır. Doğruluk oranı %90'a varan bir sistem oluşturulmuştur.

Brain tumors threathen human health significantly. Misdiagnosis of these tumors decrease effectiveness of decisions for intervention and patient's state of health. The conventional method to differentiate brain tumors is by the inspection of magnetic resonance images by clinicians. Since there are various types of brain tumors and there are many images that clinicians should examine, this method is both prone to human errors and causes excessive time consumption. In this study, the most common brain tumor types; Glioma, Meningioma and Pituitary are classified using deep learning models. While the main objective of this study is to have a high rate of accuracy, the time spent is also examined. The aim of this study is to ease clinicians work load and have a time efficient classification system. The system which has been built has an accuracy up to 90%.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.