000 | 02937nam a22004575i 4500 | ||
---|---|---|---|
999 |
_c200434576 _d52788 |
||
003 | DE-He213 | ||
005 | 20231104114437.0 | ||
007 | cr nn 008mamaa | ||
008 | 150715s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319200101 _z978-3-319-20010-1 |
||
024 | 7 |
_a10.1007/978-3-319-20010-1 _2doi |
|
040 |
_aTR-AnTOB _beng _cTR-AnTOB _erda |
||
050 | 4 | _aQ334-342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema006.3 _223 |
|
100 | 1 |
_aKubat, Miroslav. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 3 |
_aAn Introduction to Machine Learning / _cby Miroslav Kubat. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2015. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aA Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation.-Statistical Significance -- The Genetic Algorithm -- Reinforcement learning. | |
520 | _aThis book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. | ||
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aComputer simulation. | |
650 | 0 | _aInformation storage and retrieva. | |
650 | 0 | _aOptical pattern recognition. | |
650 | 1 | 4 |
_aArtificial Intelligence. _0http://scigraph.springernature.com/things/product-market-codes/I21000 |
650 | 2 | 4 |
_aSimulation and Modeling. _0http://scigraph.springernature.com/things/product-market-codes/I19000 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _0http://scigraph.springernature.com/things/product-market-codes/I18032 |
650 | 2 | 4 |
_aPattern Recognition. _0http://scigraph.springernature.com/things/product-market-codes/I2203X |
710 | 2 | _aSpringerLink (Online service) | |
856 | 4 | 0 |
_3Springer eBooks _zOnline access link to the resource _uhttps://doi.org/10.1007/978-3-319-20010-1 |
942 |
_2lcc _cEBK |
||
041 | _aeng |