000 06110nam a2200469 i 4500
999 _c200436133
_d54345
003 TR-AnTOB
005 20230908000943.0
007 ta
008 171111s2018 xxu e mmmm 00| 0 eng d
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 0 _atur
099 _aTEZ TOBB FBE BİL YL’19 GÜD
100 1 _aGüdelek, Mehmet Uğur
_9125151
245 1 0 _aZaman serisi analiz ve tahmini :
_b Derin öğrenme yaklaşımı /
_cMehmet Uğur Güdelek.
264 1 _aAnkara :
_bTOBB ETÜ Fen Bilimleri Enstitüsü,
_c2019.
300 _axiv, 81 pages :
_billustrations ;
_c29 cm
336 _2rdacontent
_btxt
_atext
337 _2rdamedia
_bn
_aunmediated
338 _2rdacarrier
_bnc
_avolume
502 _aTez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2019
520 _aGünlük hayatta, oldukça fazla problem, zaman serisi verileri içermektedir. Zaman serisi verilerinin analizini veya gelecek değer tahminlerini iyi bir şekilde yapabilmek, bu problemlerin çözümü için çok önemlidir. Çeşitli istatistiksel analiz, matematiksel analiz, sinyal işleme, makine öğrenmesi ve onun alt alanı olan derin öğrenme yöntemleri, zaman serisi verilerini analiz etmek ve gelecek tahmini yapabilmek için kullanılmaktadırlar. Özellikle, son yıllarda popülaritesi giderek artan derin öğrenme yöntemleri, karmaşık zaman serisi problemlerinin çözümünde, geleneksel yöntemlere göre daha başarılı olmuş ve kullanımları hızla artmıştır. Ancak, bahsedilen analiz ve tahminlere, baştan sona nasıl yaklaşılacağını, hangi modellerin kullanılması gerektiğini, seçilen modelin nasıl kullanılacağını ve veri setinin nasıl hazırlanması gerektiğini, bütün bir şekilde ele alan çalışmalara literatürde pek rastlanmamıştır. Önerilen tez ile, çeşitli zaman serisi problemleri incelenmiş ve yaklaşımlar anlatılmıştır. Durum denetlemeli-LSTM ve durum denetlemesiz-LSTM karşılaştırması yapılmış, basit problemler üzerinde analizleri yapılmış, iç yapıları incelenmiş, bir hanenin elektrik üretim ve tüketim miktarları tahmin edilerek, hanedeki bataryanın optimizasyonu yapılmıştır. Batarya optimizasyonu yapıldığında, optimum sonuca %99 oranında yakınsanmış ve 3-zamanlı elektrik fiyat tarifesi kullanımı ile yüksek oranda kar sağlanmıştır. Bunun dışında, CNN ile finans verisi üzerinden hesaplanan teknik analiz özniteliklerinin yardımı ile gelecek değer tahmini yapılmıştır. Bu tahmin yapılırken, CNN modelinin girdileri olacak olan teknik indikatörlerin 2D resim şeklinde dönüştürülmesi çalışılmamış bir konudur. 2D resim oluşturulurken kullanılan dendrogram kümeleme algoritması bir eksende korelasyonu sağlamış, diğer eksende zaman serisinin otokorelasyonundan faydalanılmıştır. Geliştirilen model, zaman serisi verisine uygun dönüşümler uygulandığında, eğitilebilmiş ve başarılı sonuçlar çıkarmıştır. Finans verisine uygulanan dönüşümler, farklı alanlardaki zaman serisi verilerine de uygulanabilir olduğu için, farklı mimarideki modeller de kullanışlı duruma geçmişlerdir.
520 _aIn daily life, quite a lot of problems include time series data. Making good time series data analysis or future value estimations is very important to solve these problems. Various statistical analysis, mathematical analysis, signal processing, machine learning and deep learning methods that are subfields of machine learning are used to analyze time series data and to make a future forecast. In particular, deep learning methods, which have become increasingly popular in recent years, have been more successful than traditional methods in solving some complex time series problems and their usage has spread rapidly. However, in the literature, there is not a lot of research which deals with the analysis and estimations, how to approach the end-to-end solutions, which models should be used, how to use the selected model and how the dataset should be prepared. In the proposed thesis, various time series problems are examined, and approaches are explained. Stateful LSTM and the stateless LSTM were compared, analyzed on simple problems, internal structures of them were examined. After that, electricity production and consumption amount of a household were estimated, and the battery of household were optimized. When battery optimizations were made, the optimum result was converged at a rate of 99% and a high rate of profit was achieved by the use of 3-rate electricity tariffs. In addition, the technical analysis features calculated over the financial data and used for the estimation of the future value of the financial data with the help of CNN, another deep learning model. In this estimation, the conversion of technical indicators which will be the inputs of CNN model as 2D images is an uninvestigated issue. The dendrogram clustering algorithm used in 2D image rendering provided one-axis correlation, while the other axis was used for autocorrelation of the time series. When the results were examined and transformations were applied, developed method could be trained and gave successful results. Since the transformations applied to finance data are also applicable to time series data in different fields, models which have different architecture can be useful.
650 7 _aTezler, Akademik
_932546
653 _aKonvolüsyonel sinir ağı
653 _aLSTM
653 _aMakine öğrenmesi
653 _aDerin öğrenme
653 _aEnerji tahmini
653 _aFinansal veri analizi
653 _aTeknik analiz
653 _aConvolutional neural network
653 _aMachine learning
653 _aDeep learning
653 _aEnergy estimation
653 _aFinancial data analysis
653 _aTechnical analysis
700 1 _aÖzbayoğlu, A. Murat
_eadvisor
_9125250
710 _aTOBB Ekonomi ve Teknoloji Üniversitesi.
_bFen Bilimleri Enstitüsü
_977078
856 4 0 _uhttps://tez.yok.gov.tr/
_3Ulusal Tez Merkezi
942 _cTEZ
_2z