000 05645nam a2200385 i 4500
999 _c200442178
_d60390
003 TR-AnTOB
005 20230908000954.0
007 ta
008 171111s2021 xxu e mmmm 00| 0 eng d
035 _a(TR-AnTOB)200442159
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 0 _atur
099 _aTEZ TOBB FBE BİL YL’21 KAR
100 1 _aKartal, Yavuz Selim
_eauthor
_9131597
245 1 0 _aİddiaların teyit gerekliliğine göre önceliklendirilmesi /
_cYavuz Selim Kartal ; thesis advisor Mücahid Kutlu.
246 1 1 _aPrioritizing check-worthy claims
264 1 _aAnkara :
_bTOBB ETÜ Fen Bilimleri Enstitüsü,
_c2021.
300 _axvi, 62 pages :
_billustrations ;
_c29 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
502 _aTez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Mart 2021
520 _aYanlış bilgiler, internette inanılmaz bir şekilde her gün yayılmaktadır ve toplumlar üzerindeki olumsuz etkileri tehlikeli seviyelere ulaşmıştır. Yanlış bilgilerin en önemli düşmanı doğruluk kontrolü yapanlardır. Ancak yanlış bilgilerin yayılma hızı göz önüne alındığında, doğruluk kontrolü yapmak yavaş olduğundan tüm iddiaların kontrol edilmesi mümkün olmamaktadır. Bu yüzden, iddiaları teyit gerekliliklerine göre önceliklendirerek doğruluk kontrolü yapanlara yardımcı olacak sistemlerin geliştirilmesi ve bu konuda farkındalık oluşturulması büyük önem taşımaktadır. Bu alandaki bir diğer problem ise, geliştirilecek sistemler için kullanılabilecek veri kaynaklarının çoğunlukla İngilizce olmak üzere sınırlı olmasıdır. Bu tez çalışmasında öncelikle Türkçe için ilk teyit gerektiren iddia veri kümesi olan TrClaim-19 hazırlanmıştır. TrClaim-19, 2287 tane etiketli tweet içermenin yanı sıra, teyit gerektirme özelliklerinin daha iyi anlaşılmasını sağlayacak olan teyit gerektirme gerekçeleri de sunulmuştur. Bu gerekçeler, iddiaların konularının ve muhtemel negatif etkilerinin teyit gerektirmeye sebep olan ana etkenler olduğunu öne sürmektedir. Tez çalışmasında ayrıca, iddiaları teyit gerekliliklerine göre önceliklendirmek için BERT modelinin ve çeşitli özniteliklerin kullanıldığı karma bir model de önerilmiştir. Kullanılan öznitelikler, yerel bölgeye özgü tartışmalı konular, kelime vektörleri, POS etiketleri ve daha fazlasını içermektedir. Buna ek olarak, teyit gerektiren verileri artırma, aktif öğrenme ve farklı dillerde verileri kullanma gibi veri kümesi boyutunu artırmanın farklı yolları üzerine çalışmalar yapılmıştır. Kapsamlı deneyler sonucunda, modelimizin, CLEF Check That! Lab 2018 and 2019 test koleksiyonlarındaki en iyi modellerden daha başarılı olduğu gözlemlenmiştir. Modelimiz, eğitim verilerindeki teyit gerektiren örnekler artırıldığında, Check That! Lab 2020'in test koleksiyonu için de şimdiye kadar bildirilen en iyi MAP puanını elde etmiştir. Çok dilli eğitimin ise Arapça ve Türkçe iddiaları önceliklendirmek için etkili olduğu, ancak bunun İngilizce için geçerli olmadığını gözlemlenmiştir.
520 _aThe massive amount of misinformation spreading on the Internet on a daily basis has enormous negative impacts on societies. In order to combat against misinformation and its negative outcomes, fact-checking websites detect the veracity of claims . However, fact-checking is an extremely time-consuming process and human fact-checkers are not able detect the veracity of all claims spread on the Internet. Therefore, we need systems to help fact-checkers in the combat against misinformation and to raise public awareness of this important problem. Another problem is that available data resources to develop effective systems are limited and the vast majority of them is for English. In this thesis, we introduce TrClaim-19, which is the very first labeled dataset for Turkish check-worthy claims. TrClaim-19 consists of labeled 2287 Turkish tweets with annotator rationales, enabling us to better understand the characteristics of check-worthy claims. The rationales we collected suggest that claims' topics and their possible negative impacts are the main factors affecting their check-worthiness. In this thesis, we also propose a hybrid model which combines BERT model with various features to prioritize claims based on their check-worthiness. Features we use include domain-specific controversial topics, word embeddings, POS tags, and others. In addition, we explore various ways of increasing labeled data size to effectively train the models such as increasing positive samples, active learning, and utilizing labeled data in other languages. In our extensive experiments, we show that our model outperforms all state-of-the-art models in test collections of CLEF Check That! Lab 2018 and 2019. In addition, when positive samples are increased in the training set, our model achieves the best MAP score reported so far for the test collection of Check That! Lab 2020. Furthermore, we show that cross-lingual training is effective for prioritizing Arabic and Turkish claims, but not for English.
653 _aTeyit gerektiren iddialar
653 _aDoğruluk kontrolü
653 _aYanlış bilgi
653 _aCheck-Worthy claims
653 _aFast-Checking
653 _aMisinformation
700 1 _aKutlu, Mücahid
_9131600
_eadvisor
710 _aTOBB Ekonomi ve Teknoloji Üniversitesi.
_bFen Bilimleri Enstitüsü
_977078
942 _cTEZ
_2z