000 | 03244cam a2200577Ia 4500 | ||
---|---|---|---|
999 |
_c200446478 _d64690 |
||
003 | TR-AnTOB | ||
005 | 20231009111836.0 | ||
006 | m o d | ||
007 | cr cnu---aauau | ||
008 | 030604t20022001nyua o 001 0 eng d | ||
020 |
_a047146421X _q(electronic bk.) |
||
020 |
_a9780471464211 _q(electronic bk.) |
||
020 | _a0471221546 | ||
020 | _a9780471221548 | ||
020 |
_a0471369985 _q(alk. paper) |
||
020 | _a9780471369981 | ||
024 | 7 |
_a10.1002/0471221546 _2doi |
|
035 |
_a(OCoLC)52366672 _z(OCoLC)58448593 _z(OCoLC)475872145 _z(OCoLC)647772416 _z(OCoLC)961633105 _z(OCoLC)962717733 |
||
040 |
_aN$T _beng _erda _cN$T _dYDXCP _dOCLCQ _dOCLCG _dOCLCQ _dIDEBK _dOCLCQ _dZMC _dMERUC _dOCLCQ _dZCU _dOCLCO _dN$T _dOCLCF _dOCLCQ _dOKU _dDG1 _dBTCTA _dOCLCQ _dEBLCP _dNRU _dUKDOC _dE7B _dZ5A _dREDDC _dDEBSZ _dCOO _dOCLCQ _dDG1 _dTR-AnTOB |
||
041 | 0 | _aeng | |
050 | 0 | 4 |
_aQA76.87 _b.K35 2002EBK |
072 | 7 |
_aCOM _x044000 _2bisacsh |
|
090 |
_aQA76.87 _b.K35 2002EBK |
||
245 | 0 | 0 |
_aKalman filtering and neural networks / _ceditör; Simon Haykin. |
264 | 1 |
_aNew York : _bWiley, _c2002. |
|
264 | 4 | _c©2001 | |
300 |
_a1 online resource (xiii, 284 pages) : _billustrations. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aAdaptive and learning systems for signal processing, communications, and control | |
500 | _a"A Wiley Interscience publication." | ||
500 | _aIncludes index. | ||
505 | 0 | 0 |
_tKalman filters / _rSimon Haykin -- _tParameter-based Kalman filter training : theory and implementation / _rGintaras V. Puskorius and Lee A. Feldkamp -- _tLearning shape and motion from image sequences / _rGaurav S. Patel, Sue Becker, and Ron Racine -- _tChaotic Dynamics / _rGaurav S. Patel and Simon Haykin -- _tDual extended Kalman filter methods / _rEric A. Wan and Alex T. Nelson -- _tLearning nonlinear dynamical systems using the expectation-maximization algorithm / _rSam Roweis and Zoubin Ghahramani -- _tThe unscented Kalman filter / _rEric A. Wan and Rudolph van der Merwe. |
520 | _aThis self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. | ||
588 | 0 | _aPrint version record. | |
650 | 0 |
_aNeural networks (Computer science) _9737 |
|
650 | 0 |
_aKalman filtering _921860 |
|
650 | 4 | _aKalman filtering. | |
650 | 4 | _aNeural networks (Computer science) | |
650 | 7 |
_aCOMPUTERS _xNeural Networks. _2bisacsh |
|
650 | 7 |
_aKalman filtering. _2fast _0(OCoLC)fst00985838 |
|
650 | 7 |
_aNeural networks (Computer science) _2fast _0(OCoLC)fst01036260 |
|
655 | 7 |
_aElectronic books. _2local |
|
700 |
_aHaykin, Simon S., _d1931- _eeditor _91604 |
||
776 | 0 | 8 |
_iPrint version: _tKalman filtering and neural networks. _dNew York : Wiley, ©2001 _z0471369985 _w(DLC) 2001049240 _w(OCoLC)47658960 |
856 | 4 | 0 |
_3Wiley Online Library _zOnline access link to the resource _uhttps://doi.org/10.1002/0471221546 |
942 |
_2lcc _cEBK |