000 03244cam a2200577Ia 4500
999 _c200446478
_d64690
003 TR-AnTOB
005 20231009111836.0
006 m o d
007 cr cnu---aauau
008 030604t20022001nyua o 001 0 eng d
020 _a047146421X
_q(electronic bk.)
020 _a9780471464211
_q(electronic bk.)
020 _a0471221546
020 _a9780471221548
020 _a0471369985
_q(alk. paper)
020 _a9780471369981
024 7 _a10.1002/0471221546
_2doi
035 _a(OCoLC)52366672
_z(OCoLC)58448593
_z(OCoLC)475872145
_z(OCoLC)647772416
_z(OCoLC)961633105
_z(OCoLC)962717733
040 _aN$T
_beng
_erda
_cN$T
_dYDXCP
_dOCLCQ
_dOCLCG
_dOCLCQ
_dIDEBK
_dOCLCQ
_dZMC
_dMERUC
_dOCLCQ
_dZCU
_dOCLCO
_dN$T
_dOCLCF
_dOCLCQ
_dOKU
_dDG1
_dBTCTA
_dOCLCQ
_dEBLCP
_dNRU
_dUKDOC
_dE7B
_dZ5A
_dREDDC
_dDEBSZ
_dCOO
_dOCLCQ
_dDG1
_dTR-AnTOB
041 0 _aeng
050 0 4 _aQA76.87
_b.K35 2002EBK
072 7 _aCOM
_x044000
_2bisacsh
090 _aQA76.87
_b.K35 2002EBK
245 0 0 _aKalman filtering and neural networks /
_ceditör; Simon Haykin.
264 1 _aNew York :
_bWiley,
_c2002.
264 4 _c©2001
300 _a1 online resource (xiii, 284 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aAdaptive and learning systems for signal processing, communications, and control
500 _a"A Wiley Interscience publication."
500 _aIncludes index.
505 0 0 _tKalman filters /
_rSimon Haykin --
_tParameter-based Kalman filter training : theory and implementation /
_rGintaras V. Puskorius and Lee A. Feldkamp --
_tLearning shape and motion from image sequences /
_rGaurav S. Patel, Sue Becker, and Ron Racine --
_tChaotic Dynamics /
_rGaurav S. Patel and Simon Haykin --
_tDual extended Kalman filter methods /
_rEric A. Wan and Alex T. Nelson --
_tLearning nonlinear dynamical systems using the expectation-maximization algorithm /
_rSam Roweis and Zoubin Ghahramani --
_tThe unscented Kalman filter /
_rEric A. Wan and Rudolph van der Merwe.
520 _aThis self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.
588 0 _aPrint version record.
650 0 _aNeural networks (Computer science)
_9737
650 0 _aKalman filtering
_921860
650 4 _aKalman filtering.
650 4 _aNeural networks (Computer science)
650 7 _aCOMPUTERS
_xNeural Networks.
_2bisacsh
650 7 _aKalman filtering.
_2fast
_0(OCoLC)fst00985838
650 7 _aNeural networks (Computer science)
_2fast
_0(OCoLC)fst01036260
655 7 _aElectronic books.
_2local
700 _aHaykin, Simon S.,
_d1931-
_eeditor
_91604
776 0 8 _iPrint version:
_tKalman filtering and neural networks.
_dNew York : Wiley, ©2001
_z0471369985
_w(DLC) 2001049240
_w(OCoLC)47658960
856 4 0 _3Wiley Online Library
_zOnline access link to the resource
_uhttps://doi.org/10.1002/0471221546
942 _2lcc
_cEBK