000 | 03479cam a2200637Ma 4500 | ||
---|---|---|---|
999 |
_c200446479 _d64691 |
||
003 | TR-AnTOB | ||
005 | 20231009112250.0 | ||
006 | m o d | ||
007 | cr cnu---aauau | ||
008 | 090310t20092009nju o 001 0 eng d | ||
010 | _z 2009009714 | ||
020 |
_a9780470501146 _q(electronic bk.) |
||
020 |
_a0470501146 _q(electronic bk.) |
||
020 | _a9780470501153 | ||
020 | _a0470501154 | ||
020 | _a128223711X | ||
020 | _a9781282237117 | ||
020 |
_z9780470259542 _q(cloth) |
||
020 |
_z047025954X _q(cloth) |
||
024 | 7 |
_a10.1002/9780470501153 _2doi |
|
035 |
_a(OCoLC)646814215 _z(OCoLC)438709575 _z(OCoLC)441886979 _z(OCoLC)457186540 _z(OCoLC)746576870 _z(OCoLC)748589610 _z(OCoLC)816315528 _z(OCoLC)961544282 _z(OCoLC)962636692 |
||
037 |
_a10.1002/9780470501153 _bWiley InterScience _nhttp://www3.interscience.wiley.com |
||
040 |
_aE7B _beng _erda _cE7B _dOCLCQ _dFVL _dOCLCQ _dDEBSZ _dOCLCQ _dOCLCO _dN$T _dYDXCP _dOSU _dDG1 _dEBLCP _dIDEBK _dMHW _dOCLCQ _dOCLCF _dMERUC _dCGU _dUKDOC _dCOO _dOCLCQ _dDEBBG _dAZK _dLOA _dTR-AnTOB |
||
041 | 0 | _aeng | |
050 | 0 | 4 |
_aQA312 _b.R53 2009EBK |
072 | 7 |
_aMAT _x005000 _2bisacsh |
|
072 | 7 |
_aMAT _x034000 _2bisacsh |
|
072 | 7 |
_aPBKA _2bicssc |
|
090 |
_aQA312 _b.R53 2009EBK |
||
100 | 1 |
_aRichardson, Leonard F. _eauthor _9141838 |
|
245 | 1 | 0 |
_aMeasure and integration : _ba concise introduction to real analysis / _cLeonard F. Richardson. |
264 | 1 |
_aHoboken, NJ : _bWiley, _c2009. |
|
264 | 4 | _c©2009 | |
300 | _a1 online resource (xvi, 237 pages). | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aBIBINDX | ||
505 | 0 | _aHistory of the subject -- Fields, Borel fields, and measures -- Lebesgue measure -- Measurable functions -- The integral -- Product measures and Fubini's theorem -- Functions of a real variable -- General countably additive set functions -- Examples of dual spaces from measure theory -- Translation invariance in real analysis -- Appendix: The Banach-Tarski theorem. | |
520 | _aA uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis. Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and in. | ||
588 | 0 | _aPrint version record. | |
650 | 0 |
_aLebesgue integral _93948 |
|
650 | 0 |
_aMeasure theory _93947 |
|
650 | 0 |
_aMathematical analysis _91768 |
|
650 | 7 |
_aMATHEMATICS _xCalculus. _2bisacsh |
|
650 | 7 |
_aMATHEMATICS _xMathematical Analysis. _2bisacsh |
|
650 | 7 |
_aLebesgue integral. _2fast _0(OCoLC)fst00995240 |
|
650 | 7 |
_aMathematical analysis. _2fast _0(OCoLC)fst01012068 |
|
650 | 7 |
_aMeasure theory. _2fast _0(OCoLC)fst01013175 |
|
655 | 7 |
_aElectronic books. _2local |
|
776 | 0 | 8 |
_iPrint version: _aRichardson, Leonard F. _tMeasure and integration. _dHoboken, NJ : Wiley, ©2008 _w(DLC) 2009009714 |
856 | 4 | 0 |
_3Wiley Online Library _zOnline access link to the resource _uhttps://doi.org/10.1002/9780470501153 |
942 |
_2lcc _cEBK |