000 04866nam a2200397 i 4500
001 200449089
999 _c200449089
_d67301
003 TR-AnTOB
005 20250701133703.0
007 ta
008 171111s2022 xxu e mmmm 00| 0 eng d
035 _a(TR-AnTOB)200449089
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 0 _atur
099 _aTEZ TOBB FBE BİL YL’22 MAR
100 1 _aMaral, Bahattin Can
_eauthor
_9137480
245 1 0 _aKimyasalların gen düzenleyici etkilerinin tahmini için transfer öğrenimi /
_cBahattin Can Maral; thesis advisor Mehmet Tan.
246 1 3 _aTransfer learning for predicting gene regulatory effects of chemicals
264 1 _aAnkara :
_bTOBB ETÜ Fen Bilimleri Enstitüsü,
_c2022.
300 _axii, 43 pages :
_billustrations ;
_c29 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
502 _aTez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Nisan 2022
520 _aKemogenomik, ilaç tasarımına ve taramaya yardımcı olmak amacıyla biyolojik hedeflerin kimyasal bileşiklere genomik ve/veya proteomik reaksiyonunun incelenmesidir. Kemogenomikteki birçok zorluktan biri, gerçek yaşam deney verilerine bağımlılıktan kaynaklanmaktadır; farklı kimyasal bileşiklerin ve ilaç hedeflerinin kombinasyonu, gerçekçi olmayan sayıda olası deney yaratır ve bu da belirli kimyasallara ve hedeflere yönelik önyargılı veri kümeleriyle sonuçlanmaktadır. Yapay öğrenmedeki son gelişmeler, bu veri kümelerinin sınırlarını kolayca zorlayan güçlü modellerin aşırı doygunluğuyla sonuçlanmıştır. Bu yatkınlıkların etkilerini nötrlemek için, benzer problemlerden bilgi edinme yöntemi olan transfer öğrenmeyi kullanmaktayız. Kemogenomik veri setlerindeki en önemli yanlılık, ilaç hedeflerine yönelik olandır. Bazı hücre dizilerinin erişebilirliği ve önemi, bu deneyler için bir ilaç hedefi olarak kullanılma şansını büyük ölçüde artırırken, diğerlerinin yapay öğrenme modellerini eğitmek için ancak yeterli verisi vardır. Derin Bileşik Profil Oluşturucu (DeepCOP) üzerinde yapılan çalışmayı temel olarak kullanırken, transfer öğreniminin, çeşitli ilaç hedeflerinin eğitilebilirliğini büyük ölçüde artırdığını deneysel olarak göstermekteyiz. Deneyler için kullanılan model yapısı değiştirilmemiştir. DeepCOP'da kullanılan veri bölme yöntemine ek olarak iki yöntem daha eklenmiştir. \newpage Deneylerimiz transfer öğrenmenin basit yöntemlerinden biri olan parametre tabanlı transfer öğrenimine odaklanırken, ROC eğrisi altında kalan alan puanlarında \%22,81'e varan ve ortalama \%9,00 iyileşme göstermiştir; bununla birlikte hiperparametre optimizasyonu uygulandığı ve transfer kaynağı olarak doğru hücre hattı seçildiğinde bu iyileşmelerin arttırılabileceğine yönelik potansiyel göstermiştir.
520 _aChemogenomics is the study of the genomic and/or proteomic reaction of biological targets to chemical compounds, with the goal of aiding drug design and screening. One of the many difficulties in chemogenomics comes from the dependency on real-life experiment data; the combination of different chemical compounds and drug targets creates an unrealistic number of possible experiments, which results in datasets that are biased towards certain chemicals and targets. The recent developments in machine learning resulted in an over-saturation of powerful models that easily pushed the limits of these datasets. To undo the effects of these biases, we employ transfer learning, the method of leveraging knowledge from similar problems. The most important bias of chemogenomics datasets is the bias towards drug targets. The availability and significance of certain cell lines greatly increase the chance of it being used as a drug target for these experiments, while others have barely enough data to train machine learning models. We experimentally demonstrate that transfer learning greatly increases the trainability of various drug targets, while using the work done on the Deep Compound Profiler (DeepCOP) as a basis. While focused on one of the simple methods of transfer learning, our experiments showed up to 22.81\% and an average of 9.00\% improvement on the area under ROC curve scores and showed great potential to be improved upon if accompanied by hyperparameter optimization and correct cell line as the transfer source.
653 _aTransfer öğrenimi
653 _aKemogenomik
653 _aAlan uyarlaması
653 _aTransfer learning
653 _aChemogenomics
653 _aDomain adaptation
700 1 _aTan, Mehmet
_eadvisor
_978808
710 _aTOBB Ekonomi ve Teknoloji Üniversitesi.
_bFen Bilimleri Enstitüsü
_977078
942 _cTEZ
_2z