000 | 05799nam a2200457 i 4500 | ||
---|---|---|---|
999 |
_c200450783 _d68995 |
||
003 | TR-AnTOB | ||
005 | 20230908001005.0 | ||
007 | ta | ||
008 | 171111s2022 xxu e mmmm 00| 0 eng d | ||
035 | _a(TR-AnTOB)200450783 | ||
040 |
_aTR-AnTOB _beng _erda _cTR-AnTOB |
||
041 | 0 | _atur | |
099 | _aTEZ TOBB FBE ELE YL’22 KAH | ||
100 | 1 |
_aKahriman, Berkay _eauthor _9139570 |
|
245 | 1 | 0 |
_aİnsansız hava aracı (İHA) ve insansız su aracı (İSA) baz istasyonlarının kara ve su altı ağlarda maksimum kapsama sağlayacak şekilde yerleşimi / _cBerkay Kahriman; thesis advisor Ali Murat Demirtaş. |
246 | 1 | 3 | _aLocalization of unmanned aerial vehicle (UAV) and unmanned water vehicle (UWV) base stations to provide maximum coverage on terrestrial and underwater networks |
264 | 1 |
_aAnkara : _bTOBB ETÜ Fen Bilimleri Enstitüsü, _c2022. |
|
300 |
_axiii, 59 pages : _billustrations ; _c29 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
502 | _aTez (Yüksek Lisans Tezi)--TOBB ETÜ Fen Bilimleri Enstitüsü Ağustos 2022 | ||
520 | _aSon yıllarda insansız araçlarda meydana gelen teknolojik gelişmeler sayesinde insansız araçlar telekomünikasyon, sualtı araştırmaları ve savunma gibi birçok alanda spesifik uygulamalarda kullanılmaya başlanmıştır. Bu uygulamalarda cihazlar (sensör, mobil cihaz, veri depolama merkezi vb.) arası veri iletiminde meydana gelebilecek kayıpların minimum seviyede tutulması amaçlanmıştır. Bunun için hareket kabiliyeti yüksek olan insansız araçların baz istasyonu olarak kullanılması alternatif bir çözüm olmuştur. Bu çalışmada hem kara hem de deniz ağlarının iyileştirilmesi kapsamında maksimum sayıda kullanıcıyı veya sualtı algılayıcıyı kapsayacak şekilde İnsansız Hava Aracı Baz İstasyonu (İHABİ) ve İnsansız Su Aracı Baz İstasyonu (İSABİ) yerleşimi incelenmiştir. Çalışmanın ilk kısmında, birden fazla İHABİ yerleşim problemi için makine öğreniminde kullanılan metotlar önerilmiştir ve gerekli olan veri setinin oluşturulması için çoklu İHABİ yerleşim optimizasyon modeli oluşturulmuştur. Makine öğrenimi yaklaşımında sırasıyla; Evrişimsel Sinir Ağları (CNN), Artçıl Sinir Ağları (ResNet),Derin Sinir Ağları (DNN) ve K-Means algoritması kullanılmıştır. Makine öğrenimi yaklaşımında kullanılan yöntemler, Karma Tamsayılı Doğrusal Olmayan Programlama (KTDOP) optimizasyon modeli ile kapsanan kullanıcı sayısı bakımından kıyaslanmıştır. ResNet modelinin diğer makine öğrenimi modellerine göre üstün bir sonuç verdiği gözlemlenmiştir. Çalışmanın ikinci kısmında, tek İSABİ yerleşimi için amaç fonksiyonu maksimum sayıda sualtı algılayıcı kapsanması olan KTDOP optimizasyon modeli oluşturulmuştur. Optimizasyon modeli sonuçları, farklı sayıda sualtı algılayıcı ve iletim gücü seviyeleri açısından Kıyaslama Konum Merkezi noktaları ile kıyaslanmıştır. Daha sonra birden fazla İSABİ kullanımı için optimizasyon modeli güncellenip, K-Means algoritması ile kapsanan sualtı algılayıcı sayısı bakımından kıyaslanmıştır. | ||
520 | _aNowadays, due to technological developments, unmanned vehicles have started to be used in specific applications in many areas such as telecommunication, underwater research, civilian, and defense. In these applications, it is aimed to keep the losses that may occur in data transmission between devices (sensor, mobile device, data storage center, etc.) at a minimum level. Therefore, the use of unmanned vehicles with high mobility as a base station has been an alternative solution. In this study, the placement of Unmanned Aerial Vehicle Base Station (UAVBS) and the placement of Unmanned Water Vehicle Base Station (UWVBS) were investigated to cover the maximum number of users or underwater sensors for the improvement of both terrestrial and underwater network. In the first part of our study, machine learning approach is proposed for multiple UVABS's placement problem. Required data that are used on machine learning models are generated by using a Mixed Integer Non-linear Programming (MINLP) optimization model of multi UAVBS placement problem. In the machine learning approach; Convolutional Neural Networks (CNN), Residual Neural Networks (ResNet), Deep Neural Networks (DNN) and K-Means algorithms were used respectively. The results are compared with the MINLP model in terms of user coverage. It is observed that the ResNet model gives better results than other machine learning models. In the second part of our study, we defined a MINLP optimization model for a single UWVBS placement to maximize the sensor coverage. The results of the optimization model were compared with the Benchmark Location in terms of a different number of underwater sensors and transmission power levels. For multiple UWVBS's deployment scenario, the optimization model is re-evaluated and compared with KMeans algorithm. | ||
653 | _aİnsansız su araçları | ||
653 | _aİnsansız hava araçları | ||
653 | _aKarma tamsayılı doğrusal olmayan programlama | ||
653 | _aMakine öğrenimi | ||
653 | _aSinir ağları | ||
653 | _aHareketli baz istasyonlarının konumlandırılması | ||
653 | _aUnmanned water vehicle | ||
653 | _aUnmanned aerial vehicle | ||
653 | _aMixed integer nonlinear programming | ||
653 | _aMachine learning | ||
653 | _aNeural networks | ||
653 | _aPlacement of mobile base stations | ||
700 | 1 |
_aDemirtaş, Ali Murat _9132179 _eadvisor |
|
710 |
_aTOBB Ekonomi ve Teknoloji Üniversitesi. _bFen Bilimleri Enstitüsü _977078 |
||
942 |
_cTEZ _2z |