000 07548cam a2200529 i 4500
999 _c200451980
_d70192
001 200451980
003 TR-AnTOB
005 20230915001309.0
006 m o d
007 cr |||||||||||
008 211025t20222022nju ob 001 0 eng
020 _a9781119790327
_qelectronic book
020 _a1119790328
_qelectronic book
020 _a111979031X
_qelectronic publication
020 _a9781119790280
_qadobe electronic book
020 _a111979028X
_qadobe electronic book
020 _a9781119790310
_q(electronic bk.)
020 _z9781119790297
_qhardcover
024 7 _a10.1002/9781119790327
_2doi
035 _a(OCoLC)1287752035
_z(OCoLC)1287085197
037 _a9779336
_bIEEE
040 _aDLC
_beng
_erda
_cDLC
_dOCLCF
_dOCLCO
_dDG1
_dOCLCO
_dYDX
_dN$T
_dIEEEE
041 0 _aeng
050 0 0 _aQ335
_b.G55 2022
090 _aQ335
_b.G55 2022EBK
100 _aGlisic, Savo G.
_0http://id.loc.gov/authorities/names/n95001423
_eauthor
_939461
245 1 0 _aArtificial intelligence and quantum computing for advanced wireless networks /
_cSavo G. Glisic, Beatriz Lorenzo
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons,
_c2022
264 4 _c©2022
300 _a1 online resource (xiii, 850 pages) :
_billustrations (some color)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aBIBINDX
505 0 _aPreface, xiii -- Part I Artificial Intelligence, 1 -- 1 Introduction, 3 -- 1.1 Motivation, 3 -- 1.2 Book Structure, 5 -- 2 Machine Learning Algorithms, 17 -- 2.1 Fundamentals, 17 -- 2.2 ML Algorithm Analysis, 37 -- 3 Artificial Neural Networks, 55 -- 3.1 Multi-layer Feedforward Neural Networks, 55 -- 3.2 FIR Architecture, 60 -- 3.3 Time Series Prediction, 68 -- 3.4 Recurrent Neural Networks, 69 -- 3.5 Cellular Neural Networks (CeNN), 81 -- 3.6 Convolutional Neural Network (CoNN), 84 -- 4 Explainable Neural Networks, 97 -- 4.1 Explainability Methods, 99 -- 4.2 Relevance Propagation in ANN, 103 -- 4.3 Rule Extraction from LSTM Networks, 110 -- 4.4 Accuracy and Interpretability, 112 -- 5 Graph Neural Networks, 135 -- 5.1 Concept of Graph Neural Network (GNN), 135 -- 5.2 Categorization and Modeling of GNN, 144 -- 5.3 Complexity of NN, 156 -- 6 Learning Equilibria and Games, 179 -- 6.1 Learning in Games, 179 -- 6.2 Online Learning of Nash Equilibria in Congestion Games, 196 -- 6.3 Minority Games, 202 -- 6.4 Nash Q-Learning, 204 -- 6.5 Routing Games, 211 -- 6.6 Routing with Edge Priorities, 220 -- 7 AI Algorithms in Networks, 227 -- 7.1 Review of AI-Based Algorithms in Networks, 227 -- 7.2 ML for Caching in Small Cell Networks, 237 -- 7.3 Q-Learning-Based Joint Channel and Power Level Selection in Heterogeneous Cellular Networks, 243 -- 7.4 ML for Self-Organizing Cellular Networks, 252 -- 7.5 RL-Based Caching, 267 -- 7.6 Big Data Analytics in Wireless Networks, 274 -- 7.7 Graph Neural Networks, 279 -- 7.8 DRL for Multioperator Network Slicing, 291 -- 7.9 Deep Q-Learning for Latency-Limited Network Virtualization, 302 -- 7.10 Multi-Armed Bandit Estimator (MBE), 317 -- 7.11 Network Representation Learning, 327 -- Part II Quantum Computing, 361 -- 8 Fundamentals of Quantum Communications, 363 -- 8.1 Introduction, 363 -- 8.2 Quantum Gates and Quantum Computing, 372 -- 8.3 Quantum Fourier Transform (QFT), 386 -- 9 Quantum Channel Information Theory, 397 -- 9.1 Communication Over a Channel, 398 -- 9.2 Quantum Information Theory, 401 -- 9.3 Channel Description, 407 -- 9.4 Channel Classical Capacities, 414 -- 9.5 Channel Quantum Capacity, 431 -- 9.6 Quantum Channel Examples, 437 -- 10 Quantum Error Correction, 451 -- 10.1 Stabilizer Codes, 458 -- 10.2 Surface Code, 465 -- 10.3 Fault-Tolerant Gates, 471 -- 10.4 Theoretical Framework, 474 -- 11 Quantum Search Algorithms, 499 -- 11.1 Quantum Search Algorithms, 499 -- 11.2 Physics of Quantum Algorithms, 510 -- 12 Quantum Machine Learning, 543 -- 12.1 QML Algorithms, 543 -- 12.2 QNN Preliminaries, 547 -- 12.3 Quantum Classifiers with ML: Near-Term Solutions, 550 -- 12.4 Gradients of Parameterized Quantum Gates, 560 -- 12.5 Classification with QNNs, 568 -- 12.6 Quantum Decision Tree Classifier, 575 -- 13 QC Optimization, 593 -- 13.1 Hybrid Quantum-Classical Optimization Algorithms, 593 -- 13.2 Convex Optimization in Quantum Information Theory, 601 -- 13.3 Quantum Algorithms for Combinatorial Optimization Problems, 609 -- 13.4 QC for Linear Systems of Equations, 614 -- 13.5 Quantum Circuit, 625 -- 13.6 Quantum Algorithm for Systems of Nonlinear Differential Equations, 628 -- 14 Quantum Decision Theory, 637 -- 14.1 Potential Enablers for Qc, 637 -- 14.2 Quantum Game Theory (QGT), 641 -- 14.3 Quantum Decision Theory (QDT), 665 -- 14.4 Predictions in QDT, 676 -- 15 Quantum Computing in Wireless Networks, 693 -- 15.1 Quantum Satellite Networks, 693 -- 15.2 QC Routing for Social Overlay Networks, 706 -- 15.3 QKD Networks, 713 -- 16 Quantum Network on Graph, 733 -- 16.1 Optimal Routing in Quantum Networks, 733 -- 16.2 Quantum Network on Symmetric Graph, 744 -- 16.3 QWs, 747 -- 16.4 Multidimensional QWs, 753 -- 17 Quantum Internet, 773 -- 17.1 System Model, 775 -- 17.2 Quantum Network Protocol Stack, 789 -- References, 814 -- Index, 821
520 _a"By increasing the density and number of different functionalities in wireless networks there is more and more need for the use of artificial intelligence for planning network deployment, running their optimization and dynamically controlling their operation. For example, machine learning algorithms are used for the prediction of traffic and network state in order to timely reserve resources for smooth communication with high reliability and low latency; Big data mining is used to predict customer behaviour and pre-distribute the information content across the network so that it can be efficiently delivered as soon as requested; Intelligent agents can search the internet on behalf of the customer in order to find the best options when it comes to buying any product online. This timely book presents a review of AI-based learning algorithms with a number of case studies supported by Python and R programs, providing a discussion of the learning algorithms used in decision making based on game theory and a number of specific applications in wireless networks, such as channel, network state and traffic prediction. It is expected that once quantum computing becomes a commercial reality, it will be used in wireless communications systems in order to speed up specific processes due to its inherent parallelization capabilities. This is a practical book packed with case studies and follows a basic through to advanced level path and is an ideal course accompaniment for graduate/masters students, and online professional study."--
_cProvided by publisher
650 0 _aArtificial intelligence
_0http://id.loc.gov/authorities/subjects/sh85008180
_91543
650 0 _aQuantum computing.
_0http://id.loc.gov/authorities/subjects/sh2014002839
650 0 _aWireless communication systems
_0http://id.loc.gov/authorities/subjects/sh92006740
_9692
650 0 _aArtificial intelligence
_0https://id.nlm.nih.gov/mesh/D001185
_91543
655 0 _aElectronic books
_92032
700 1 _aLorenzo, Beatriz,
_0http://id.loc.gov/authorities/names/n2009003447
_eauthor
856 4 0 _3Wiley Online Library
_zConnect to resource
_uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119790327
942 _2lcc
_cEBK