000 02263cam a22004578i 4500
999 _c200451981
_d70193
001 200451981
003 TR-AnTOB
005 20230915001309.0
006 m |o d |
007 cr_|||||||||||
008 220112s2022 nju ob 001 0 eng
010 _a 2022000564
020 _a9781119750758
_q(ebook)
020 _a9781119750734
_q(pdf)
020 _a9781119750741
_q(epub)
020 _z9781119750727
_q(hardback)
040 _aDLC
_beng
_erda
_cDLC
_dTR-AnTOB
041 0 _aeng
042 _apcc
050 0 0 _aQA76.889
_b.S73 2022
090 _aQA76.889
_b.S73 2022EBK
100 1 _aStancil, Daniel D,
_eauthor
245 1 0 _aPrinciples of superconducting quantum computers /
_cDaniel D. Stancil, North Carolina State University, Raleigh, North Carolina, Gregory T. Byrd, North Carolina State University, Raleigh, North Carolina.
250 _aFirst edition.
264 1 _aHoboken, NJ, USA :
_bJohn Wiley & Sons, Inc.,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aBIBINDX
520 _a"Digital systems that are most familiar are based on binary digits, or "bits." Each bit can take on either the value "1" or "0", and any arbitrary data can be represented by such a binary representation. In addition, any arbitrary logical operation can be implemented using bits. The text refers to these familiar systems as "classical" systems, since they are governed by the everyday laws of classical physics. Quantum computing is different from classical computing in a number of significant ways, as discussed in 'Principles of superconducting quantum computers'"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
650 0 _aQuantum computers
_9123075
650 0 _aSuperconducting quantum interference devices.
655 0 _aElectronic books
_92032
700 1 _aByrd, Gregory T.,
_eauthor
856 4 0 _3Wiley Online Library
_zConnect to resource
_uhttps://onlinelibrary.wiley.com/doi/10.1002/9781119750758.fmatter
942 _2lcc
_cEBK