000 03939nam a22006015i 4500
999 _c200456955
_d75167
003 TR-AnTOB
005 20231123085655.0
007 cr nn 008mamaa
008 210820s2022 sz | s |||| 0|eng d
020 _a9783030795191
024 7 _a10.1007/978-3-030-79519-1
_2doi
040 _aTR-AnTOB
_beng
_cTR-AnTOB
_erda
041 _aeng
050 4 _aTK2313
072 7 _aTGB
_2bicssc
072 7 _aTEC046000
_2bisacsh
072 7 _aTGB
_2thema
090 _aTK2313EBK
245 1 0 _aSmart Monitoring of Rotating Machinery for Industry 4.0
_h[electronic resource] /
_cedited by Fakher Chaari, Xavier Chiementin, Radoslaw Zimroz, Fabrice Bolaers, Mohamed Haddar.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aApplied Condition Monitoring,
_x2363-6998 ;
_v19
505 0 _aVulnerabilities and fruits of smart monitoring -- A tutorial on Canonical Variate Analysis for diagnosis and prognosis -- A structured approach to machine learning for condition monitoring -- A structured approach to machine learning for condition monitoring: a case study -- Dynamic Reliability Assessment of Structures and Machines Using the Probability Density Evolution Method -- Rotating machinery condition monitoring methods for applications with different kinds of available prior knowledge -- Model Based Fault Diagnosis in Bevel Gearbox -- Investigating the electro-mechanical interaction between helicoidal gears andan asynchronous geared motor -- Algebraic estimator of damping failure for au-tomotive Shock Absorber -- On the use of jerk for condition monitoring of gearboxes in non-stationary operations -- Dynamic remaining useful life estimation for a shaft bearings system. .
520 _aThis book offers an overview of current methods for the intelligent monitoring of rotating machines. It describes the foundations of smart monitoring, guiding readers to develop appropriate machine learning and statistical models for answering important challenges, such as the management and analysis of a large volume of data. It also discusses real-world case studies, highlighting some practical issues and proposing solutions to them. The book offers extensive information on research trends, and innovative strategies to solve emerging, practical issues. It addresses both academics and professionals dealing with condition monitoring, and mechanical and production engineering issues, in the era of industry 4.0.
650 0 _aMachinery.
650 0 _aSignal processing.
650 0 _aDynamics.
650 0 _aNonlinear theories.
650 1 4 _aMachinery and Machine Elements.
650 2 4 _aDigital and Analog Signal Processing.
650 2 4 _aApplied Dynamical Systems.
653 0 _aElectric machinery -- Monitoring
653 0 _aMachine learning
653 0 _aIndustry 4.0
700 1 _aChaari, Fakher.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aChiementin, Xavier.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aZimroz, Radoslaw.
_eeditor.
_0(orcid)0000-0003-4781-9972
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aBolaers, Fabrice.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aHaddar, Mohamed.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
830 0 _aApplied Condition Monitoring,
_x2363-6998 ;
_v19
856 4 0 _uhttps://doi.org/10.1007/978-3-030-79519-1
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK