000 04227nam a22005415i 4500
999 _c200457419
_d75631
003 TR-AnTOB
005 20231109112649.0
007 cr nn 008mamaa
008 220701s2022 sz | s |||| 0|eng d
020 _a9783030997281
024 7 _a10.1007/978-3-030-99728-1
_2doi
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 _aeng
060 _aWK 810
072 7 _aMQW
_2bicssc
072 7 _aTEC059000
_2bisacsh
072 7 _aMQW
_2thema
096 _aWK810EBK
245 1 0 _aAdvanced Bioscience and Biosystems for Detection and Management of Diabetes
_h[electronic resource] /
_cedited by Kishor Kumar Sadasivuni, John-John Cabibihan, Abdulaziz Khalid A M Al-Ali, Rayaz A. Malik.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Series on Bio- and Neurosystems,
_x2520-8543 ;
_v13
505 0 _aIntroduction -- Review of Emerging Approaches Utilizing Alternative Physiological Human Body Fluids in Non- or Minimally Invasive Glucose Monitoring -- Current Status of Non-invasive Diabetics Monitoring -- A New Solution for Non-invasive Glucose Measurement Based on Heart Rate Variability -- Optics Based Techniques for Monitoring Diabetics -- SPR Assisted Diabetics Detection -- Infrared and Raman Spectroscopy Assisted Diagnosis of Diabetics -- Photoacoustic Spectroscopy Mediated Non-Invasive Detection of Diabetics -- Electrical Bioimpedance Based Estimation of Diabetics -- Millimeter and Microwave Sensing Technique for Diagnosis of Diabetics -- Different Machine Learning Algorithm involved in Glucose Monitoring to Prevent Diabetes Complications and Enhanced Diabetes Mellitus Management -- The role of Artificial Intelligence in Diabetes management -- Artificial Intelligence and Machine learning for Diabetes Decision Support -- Commercial Non-Invasive Glucose Sensor Devices for Monitoring Diabetics -- Future Developments in Invasive and Non-Invasive Diabetics Monitoring.
520 _aThis book covers the medical condition of diabetic patients, their early symptoms and methods conventionally used for diagnosing and monitoring diabetes. It describes various techniques and technologies used for diabetes detection. The content is built upon moving from regressive technology (invasive) and adapting new-age pain-free technologies (non-invasive), machine learning and artificial intelligence for diabetes monitoring and management. This book details all the popular technologies used in the health care and medical fields for diabetic patients. An entire chapter is dedicated to how the future of this field will be shaping up and the challenges remaining to be conquered. Finally, it shows artificial intelligence and predictions, which can be beneficial for the early detection, dose monitoring and surveillance for patients suffering from diabetes.
650 0 _aBiomedical engineering.
650 0 _aMachine learning.
650 1 4 _aBiomedical Engineering and Bioengineering.
650 2 4 _aMachine Learning.
653 0 _aDiabetes Mellitus -- diagnosis
653 0 _aDiabetes Mellitus -- therapy
700 1 _aSadasivuni, Kishor Kumar.
_eeditor.
_0(orcid)0000-0003-2730-6483
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aCabibihan, John-John.
_eeditor.
_0(orcid)0000-0001-5892-743X
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aA M Al-Ali, Abdulaziz Khalid.
_eeditor.
_0(orcid)0000-0003-0006-2642
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aMalik, Rayaz A.
_eeditor.
_0(orcid)0000-0002-7188-8903
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
830 0 _aSpringer Series on Bio- and Neurosystems,
_x2520-8543 ;
_v13
856 4 0 _uhttps://doi.org/10.1007/978-3-030-99728-1
_3Springer eBooks
_zOnline access link to the resource
942 _2NLM
_cEBK