000 03615nam a22005655i 4500
999 _c200457468
_d75680
003 TR-AnTOB
005 20231121163655.0
007 cr nn 008mamaa
008 211005s2022 sz | s |||| 0|eng d
020 _a9783030807412
024 7 _a10.1007/978-3-030-80741-2
_2doi
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 _aeng
050 4 _aTK7895.S65
072 7 _aTJF
_2bicssc
072 7 _aUYU
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYU
_2thema
090 _aTK7882.S65EBK
100 1 _aManjunath, K.E.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aMultilingual Phone Recognition in Indian Languages
_h[electronic resource] /
_cby K.E Manjunath.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
_x2191-7388
505 0 _a1. Introduction -- 2. Literature review -- 3. Development and analysis of Multilingual Phone recognition system -- 4. Prediction of Multilingual Articulatory Features -- 5. Articulatory Features of Multilingual Phone recognition -- 6. Applications of Multilingual Phone recognition in Code-switched and Non-code-switched Scenarios -- 7. Summary and Conclusion.
520 _aThe book presents current research and developments in multilingual speech recognition. The author presents a Multilingual Phone Recognition System (Multi-PRS), developed using a common multilingual phone-set derived from the International Phonetic Alphabets (IPA) based transcription of six Indian languages - Kannada, Telugu, Bengali, Odia, Urdu, and Assamese. The author shows how the performance of Multi-PRS can be improved using tandem features. The book compares Monolingual Phone Recognition Systems (Mono-PRS) versus Multi-PRS and baseline versus tandem system. Methods are proposed to predict Articulatory Features (AFs) from spectral features using Deep Neural Networks (DNN). Multitask learning is explored to improve the prediction accuracy of AFs. Then, the AFs are explored to improve the performance of Multi-PRS using lattice rescoring method of combination and tandem method of combination. The author goes on to develop and evaluate the Language Identification followed by Monolingual phone recognition (LID-Mono) and common multilingual phone-set based multilingual phone recognition systems.
650 0 _aSpeech processing systems.
650 0 _aSignal processing.
650 0 _aNatural language processing (Computer science).
650 0 _aComputational linguistics.
650 1 4 _aSpeech and Audio Processing.
650 2 4 _aNatural Language Processing (NLP).
650 2 4 _aComputational Linguistics.
653 0 _aAutomatic speech recognition
653 0 _aComputational linguistics -- India
710 2 _aSpringerLink (Online service)
830 0 _aSpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
_x2191-7388
856 4 0 _uhttps://doi.org/10.1007/978-3-030-80741-2
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK