000 05867nam a22005895i 4500
999 _c200457590
_d75802
003 TR-AnTOB
005 20231122101637.0
007 cr nn 008mamaa
008 211023s2022 sz | s |||| 0|eng d
020 _a9783030817169
024 7 _a10.1007/978-3-030-81716-9
_2doi
040 _aTR-AnTOB
_beng
_cTR-AnTOB
_erda
041 _aeng
050 4 _aTA656.6
072 7 _aUN
_2bicssc
072 7 _aCOM031000
_2bisacsh
072 7 _aUN
_2thema
090 _aTA656.6EBK
245 1 0 _aStructural Health Monitoring Based on Data Science Techniques
_h[electronic resource] /
_cedited by Alexandre Cury, Diogo Ribeiro, Filippo Ubertini, Michael D. Todd.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStructural Integrity,
_x2522-5618 ;
_v21
505 0 _aChapter 1. Vibration-based structural damage detection using sparse Bayesian learning techniques (Rongrong Hou) -- Chapter 2. Bayesian deep learning for vibration-based bridge damage detection (Davíð Steinar Ásgrímsson) -- Chapter 3. Diagnosis, Prognosis, and Maintenance Decision Making for Civil Infrastructure: Bayesian Data Analytics and Machine Learning (Manuel A. Vega) -- Chapter 4. Real-Time Machine Learning for High-Rate Structural Health Monitoring (Simon Laflamme) -- Chapter 5. Development and validation of a data-based SHM method for railway bridges (Ana Claudia Neves) -- Chapter 6. Real-time unsupervised detection of early damage in railway bridges using traffic-induced responses (Andreia Meixedo) -- Chapter 7. Fault diagnosis in structural health monitoring systems using signal processing and machine learning techniques (Henrieke Fritz). Chapter 8. A self-adaptive hybrid model/data-driven approach to SHM based on Model Order Reduction and Deep Learning (Luca Rosafalco) -- Chapter 9. Predictive monitoring of large-scale engineering assets using machine learning techniques and reduced order modeling (Caterina Bigoni) -- Chapter 10. Unsupervised data-driven methods for damage identification in discontinuous media (Rebecca Napolitano) -- Chapter 11. Applications of Deep Learning in intelligent construction (Yang Zhang) -- Chapter 12. Integrated SHM systems: Damage detection through unsupervised learning and data fusion (Enrique García-Macías) -- Chapter 13. Environmental influence on modal parameters: linear and non-linear methods for its compensation in the context of Structural Health Monitoring (Carlo Rainieri) -- Chapter 14. Vibration based damage feature for long-term structural health monitoring under realistic environmental and operational variability (Francescantonio Lucà) -- Chapter 15. On explicit and implicit procedures to mitigate environmental and operational variabilities in data-driven structural health monitoring (David García Cava). Chapter 16. Explainable artificial intelligence to advanced structural health monitoring (Daniel Luckey) -- Chapter 17. Physics-informed machine learning for Structural Health Monitoring (Elizabeth J. Cross) -- Chapter 18. Interpretable Machine Learning for Function Approximation in Structural Health Monitoring (Jin-Song Pei) -- Chapter 19. Partially-Supervised Learning for Data-Driven Structural Health Monitoring (Lawrence A. Bull) -- Chapter 20. Population-Based Structural Health Monitoring (Paul Gardner) -- Chapter 21. Machine Learning-Based Structural Damage Identification within Three-Dimensional Point Clouds (Mohammad Ebrahim Mohammadi) -- Chapter 22. New sensor nodes, cloud and data analytics: case studies on large scale SHM systems (Isabella Alovisi).
520 _aThe modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.
650 0 _aArtificial intelligence—Data processing.
650 0 _aMachine learning.
650 0 _aQuantitative research.
650 0 _aArtificial intelligence.
650 1 4 _aData Science.
650 2 4 _aMachine Learning.
650 2 4 _aData Analysis and Big Data.
650 2 4 _aArtificial Intelligence.
653 0 _aStructural health monitoring
653 0 _aStructural health monitoring -- Data processing
700 1 _aCury, Alexandre.
_eeditor.
_0(orcid)0000-0002-8860-1286
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aRibeiro, Diogo.
_eeditor.
_0(orcid)0000-0001-8624-9904
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aUbertini, Filippo.
_eeditor.
_0(orcid)0000-0002-5044-8482
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aTodd, Michael D.
_eeditor.
_0(orcid)0000-0002-4492-5887
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
830 0 _aStructural Integrity,
_x2522-5618 ;
_v21
856 4 0 _uhttps://doi.org/10.1007/978-3-030-81716-9
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK