000 03500nam a22005415i 4500
999 _c200457652
_d75864
003 TR-AnTOB
005 20231114170803.0
007 cr nn 008mamaa
008 211029s2022 sz | s |||| 0|eng d
020 _a9783030812300
024 7 _a10.1007/978-3-030-81230-0
_2doi
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 _aeng
050 4 _aTA1638.4
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
090 _aTA1638.4EBK
100 1 _aSiddiqui, Fasahat Ullah.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aClustering Techniques for Image Segmentation
_h[electronic resource] /
_cby Fasahat Ullah Siddiqui, Abid Yahya.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Introduction to Image Segmentation and Clustering -- Hard and Soft Clustering Techniques -- New Enhanced Clustering Techniques -- Mathematical Model of clustering techniques and evaluation methods -- Conclusion.
520 _aThis book presents the workings of major clustering techniques along with their advantages and shortcomings. After introducing the topic, the authors illustrate their modified version that avoids those shortcomings. The book then introduces four modified clustering techniques, namely the Optimized K-Means (OKM), Enhanced Moving K-Means-1(EMKM-1), Enhanced Moving K-Means-2(EMKM-2), and Outlier Rejection Fuzzy C-Means (ORFCM). The authors show how the OKM technique can differentiate the empty and zero variance cluster, and the data assignment procedure of the K-mean clustering technique is redesigned. They then show how the EMKM-1 and EMKM-2 techniques reform the data-transferring concept of the Adaptive Moving K-Means (AMKM) to avoid the centroid trapping problem. And that the ORFCM technique uses the adaptable membership function to moderate the outlier effects on the Fuzzy C-meaning clustering technique. This book also covers the working steps and codings of quantitative analysis methods. The results highlight that the modified clustering techniques generate more homogenous regions in an image with better shape and sharp edge preservation. Showcases major clustering techniques, detailing their advantages and shortcomings; Includes several methods for evaluating the performance of segmentation techniques; Presents several applications including medical diagnosis systems, satellite imaging systems, and biometric systems.
650 0 _aSignal processing.
650 0 _aComputational intelligence.
650 0 _aComputer vision.
650 1 4 _aSignal, Speech and Image Processing .
650 2 4 _aComputational Intelligence.
650 2 4 _aComputer Vision.
653 0 _aImage segmentation
653 0 _aCluster analysis
700 1 _aYahya, Abid.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
856 4 0 _uhttps://doi.org/10.1007/978-3-030-81230-0
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK