000 09190nam a22005655i 4500
999 _c200457965
_d76177
003 TR-AnTOB
005 20231114111104.0
007 cr nn 008mamaa
008 211222s2022 sz | s |||| 0|eng d
020 _a9783030830700
024 7 _a10.1007/978-3-030-83070-0
_2doi
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 _aeng
050 4 _aQA76.9.D343
072 7 _aTJK
_2bicssc
072 7 _aTEC041000
_2bisacsh
072 7 _aTJK
_2thema
090 _aQA76.9.D343EBK
100 1 _aMcCarthy, Richard V.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aApplying Predictive Analytics
_h[electronic resource] :
_bFinding Value in Data /
_cby Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci.
250 _a2nd ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aChapter 1 -- Introduction to Predictive Analytics -- 1.1 Predictive Analytics in Action -- 1.2 Analytics Landscape -- 1.3 Analytics -- 1.3.2 Predictive Analytics -- 1.4 Regression Analysis -- 1.5 Machine Learning Techniques -- 1.6 Predictive Analytics Model -- 1.7 Opportunities in Analytics -- 1.8 Introduction to the Automobile Insurance Claim Fraud Example -- 1.9 Chapter Summary -- References -- Chapter 2 -- Know Your Data – Data Preparation -- 2.1 Classification of Data -- 2.1.1 Qualitative versus Quantitative -- 2.1.2 Scales of Measurement -- 2.2. Data Preparation Methods. -- 2.2.1 Inconsistent Formats -- 2.2.2 Missing Data -- 2.2.3 Outliers -- 2.2.4 Other Data Cleansing Considerations -- 2.3 Data Sets and Data Partitioning -- 2.4 SAS Enterprise Miner™ Model Components -- 2.4.1 Step 1. Create Three of the Model Components -- 2.4.2 Step 2. Import an Excel File and Save as a SAS File -- 2.4.3 Step 3. Create the Data Source -- 2.4.4 Step 4. Partition the Data Source -- 2.4.5 Step 5 Data Exploration -- 2.4.6 Step 6 Missing Data -- 2.4.7 Step 7. Handling Outliers -- 2.4.8 Step 8. Categorical Variables with Too Many Levels -- 2.5 Chapter Summary -- References -- Chapter 3 -- What do Descriptive Statistics Tell Us -- 3.1 Descriptive Analytics -- 3.2 The Role of the Mean, Median and Mode -- 3.3 Variance and Distribution -- 3.4 The Shape of the Distribution -- 3.4.2 Kurtosis -- 3.5 Covariance and Correlation -- 3.6 Variable Reduction -- 3.6.1 Variable Clustering -- 3.6.2 Principal Component Analysis -- 3.7 Hypothesis Testing -- 3.8 Analysis of Variance (ANOVA) -- 3.9 Chi Square -- 3. Fit Statistics -- 3. Stochastic Models -- 3.12 Chapter Summary -- References -- Chapter 4 -- Predictive Models Using Regression -- 4.1 Regression -- 4.1.1 Classical assumptions -- 4.2 Ordinary Least Squares -- 4.3 Simple Linear Regression -- 4.3.1 Determining Relationship Between Two Variables -- 4.3.2 Line of Best Fit and Simple Linear Regression Equation -- 4.4 Multiple Linear Regression -- 4.4.1 Metrics to Evaluate the Strength of the Regression Line -- 4.3.2 Best-fit model -- 4.3.3 Selection of Variables in Regression -- 4.5 Principal Component Regression -- 4.5.1 Principal Component Analysis Revisited -- 4.5.2 Principal Component Regression -- 4.6 Partial Least Squares -- 4.7 Logistic Regression -- 4.7.1 Binary Logistic Regression -- 4.7.2 Examination of Coefficients -- 4.7.3 Multinomial Logistic Regression -- 4.7.4 Ordinal Logistic Regression -- 4.8 Implementation of Regression in SAS Enterprise Miner™ -- 4.8.1 Regression Node Train Properties: Class Targets -- 4.8.2 Regression Node Train Properties: Model Options -- 4.8.3 Regression Node Train Properties: Model Selection -- 4.9 Implementation of Two-Factor Interaction and Polynomial Terms -- 4.9.1 Regression Node Train Properties: Equation -- 4. DMINE Regression in SAS Enterprise Miner™ -- 4..1 DMINE Properties -- 4..2 DMINE Results -- 4. Partial Least Squares Regression in SAS Enterprise Miner™ -- 4..1 Partial Least Squares Properties -- 4..2 Partial Least Squares Results -- 4. Least Angles Regression in SAS Enterprise Miner™ -- 4..1 Least Angle Regression Properties -- 4..2 Least Angles Regression Results -- 4. Other Forms of Regression -- 4. Chapter Summary -- References -- Chapter 5 -- The Second of the Big Three – Decision Trees -- 5.1 What is a Decision Tree? -- 5.2 Creating a Decision Tree -- 5.3 Data Partitions and Decision Trees -- 5.4 Creating a Decision Tree Using SAS Enterprise Miner™ -- The key properties include: -- Subtree Properties -- 5.4.1 Overfitting -- 5.5 Creating an Interactive Decision Tree using SAS Enterprise Miner ™ -- 5.6 Creating a Maximal Decision Tree using SAS Enterprise Miner ™ -- 5.7 Chapter Summary -- References -- Chapter 6 -- The Third of the Big Three - Neural Networks -- 6.1 What is a Neural Network? -- 6.2 History of Neural Networks -- 6.3 Components of a Neural Network -- 6.4 Neural Network Architectures -- 6.5 Training a Neural Network -- 6.6 Radial Basis Function Neural Networks -- 6.7 Creating a Neural Network using SAS Enterprise MinerÔ -- 6.8 Using SAS Enterprise MinerÔ to Automatically Generate a Neural Network -- 6.9 Explaining a Neural Network -- 6. Chapter Summary -- References -- Chapter 7 -- Model Comparisons and Scoring -- 7.1 Beyond the Big -- 7.2 Gradient Boosting -- 7.3 Ensemble Models -- 7.4 Random Forests -- 7.6 Two-Stage Model -- 7.7 Comparing Predictive Models -- 7.7.1 Evaluating Fit Statistics – Which Model Do We Use? -- 7.8 Using Historical Data to Predict the Future – Scoring -- 7.8.1 Analyzing and Reporting Results -- 7.8.2 Save Data Node -- 7.8.3 Reporter Node -- 7.9 The Importance of Predictive Analytics -- 7.9.1 What Should We Expect for Predictive Analytics in the Future? -- 7. Chapter Summary -- References -- Chapter 8 -- finding Associations in Data through Cluster Analysis -- 8.1 Applications and Uses of Cluster Analysis -- 8.2 Types of Clustering Techniques -- 8.3 Hierarchical Clustering -- 8.3.1 Agglomerative Clustering -- 8.3.2 Divisive Clustering -- 8.3.3 Agglomerative vs Divisive Clustering -- 8.4 Non-hierarchical clustering -- 8.4.1 K-means Clustering -- 8.4.2 Initial Centroid Selection -- 8.4.3 Determining the Number of Clusters -- 8.4.4 Evaluating your clusters -- 8.5 Hierarchical vs Nonhierarchical -- 8.6 Cluster Analysis using SAS Enterprise Miner™ -- 8.6.1 Cluster Node -- 8.6.2 Additional Key Properties of the Cluster Node -- 8.7 Applying Cluster Analysis to the Insurance Claim Fraud Data Set -- 8.8 Chapter Summary -- References -- -- Chapter 9 -- 9.1 What is Text Analytics? -- 9.2 Information Retrieval -- 9.3 Text Parsing -- 9.4 Zipf’s Law -- 9.5 Text Filter -- 9.6 Text Cluster -- 9.7 Text Topic -- 9.8 Text Rule Builder -- 9.9 Text Profile -- 9. Chapter Summary -- Discussion Questions -- References -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Appendix B -- Can you Predict the Money Laundering Cases? -- B.1 Introduction -- B.2. Business Problem -- B.3. Analyze Data -- B.4. Development and Optimization of a Best Fit Model -- B.5. Final Report -- References. .
520 _aThe new edition of this textbook presents a practical, updated approach to predictive analytics for classroom learning. The authors focus on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life examples of how business analytics have been used in various aspects of organizations to solve issues or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. The new edition includes chapters on clusters and associations and text mining to support predictive models. An additional case is also included that can be used with each chapter or as a semester project.
650 0 _aTelecommunication.
650 0 _aComputational intelligence.
650 0 _aData mining.
650 0 _aBusiness information services.
650 1 4 _aCommunications Engineering, Networks.
650 2 4 _aComputational Intelligence.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aIT in Business.
653 0 _aEnterprise miner -- Textbooks
653 0 _aData mining
653 0 _aSAS (Computer program language)
700 1 _aMcCarthy, Mary M.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aCeccucci, Wendy.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
856 4 0 _uhttps://doi.org/10.1007/978-3-030-83070-0
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK