000 03388nam a22005055i 4500
999 _c200458255
_d76467
003 TR-AnTOB
005 20231115161426.0
007 cr nn 008mamaa
008 220128s2022 sz | s |||| 0|eng d
020 _a9783030909031
024 7 _a10.1007/978-3-030-90903-1
_2doi
040 _aTR-AnTOB
_beng
_cTR-AnTOB
_erda
041 _aeng
050 4 _aTA1634
072 7 _aUT
_2bicssc
072 7 _aTEC007000
_2bisacsh
072 7 _aUT
_2thema
090 _aTA1634EBK
100 1 _aVelasco-Montero, Delia.
_eauthor.
_0(orcid)0000-0003-3487-1712
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aVisual Inference for IoT Systems: A Practical Approach
_h[electronic resource] /
_cby Delia Velasco-Montero, Jorge Fernández-Berni, Angel Rodríguez-Vázquez.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Embedded Vision for the Internet of the Things: State-of-the-Art -- Hardware, Software, and Network Models for Deep-Learning Vision: A Survey -- Optimal Selection of Software and Models for Visual Interference -- Relevant Hardware Metrics for Performance Evaluation -- Prediction of Visual Interference Performance -- A Case Study: Remote Animal Recognition.
520 _aThis book presents a systematic approach to the implementation of Internet of Things (IoT) devices achieving visual inference through deep neural networks. Practical aspects are covered, with a focus on providing guidelines to optimally select hardware and software components as well as network architectures according to prescribed application requirements. The monograph includes a remarkable set of experimental results and functional procedures supporting the theoretical concepts and methodologies introduced. A case study on animal recognition based on smart camera traps is also presented and thoroughly analyzed. In this case study, different system alternatives are explored and a particular realization is completely developed. Illustrations, numerous plots from simulations and experiments, and supporting information in the form of charts and tables make Visual Inference and IoT Systems: A Practical Approach a clear and detailed guide to the topic. It will be of interest to researchers, industrial practitioners, and graduate students in the fields of computer vision and IoT.
650 0 _aInternet of things.
650 0 _aComputer vision.
650 0 _aArtificial intelligence.
650 1 4 _aInternet of Things.
650 2 4 _aComputer Vision.
650 2 4 _aArtificial Intelligence.
700 1 _aFernández-Berni, Jorge.
_eauthor.
_0(orcid)0000-0003-0476-4676
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aRodríguez-Vázquez, Angel.
_eauthor.
_0(orcid)0000-0002-1006-5241
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
856 4 0 _uhttps://doi.org/10.1007/978-3-030-90903-1
_3Springer eBooks
_zOnline access link to the resource
942 _2lcc
_cEBK