000 | 03209nam a22005895i 4500 | ||
---|---|---|---|
999 |
_c200458485 _d76697 |
||
003 | TR-AnTOB | ||
005 | 20231116090901.0 | ||
007 | cr nn 008mamaa | ||
008 | 220224s2022 sz | s |||| 0|eng d | ||
020 | _a9783030914790 | ||
024 | 7 |
_a10.1007/978-3-030-91479-0 _2doi |
|
040 |
_aTR-AnTOB _beng _erda _cTR-AnTOB |
||
041 | _aeng | ||
050 | 4 | _aQ325.73 | |
072 | 7 |
_aTJF _2bicssc |
|
072 | 7 |
_aUYS _2bicssc |
|
072 | 7 |
_aTEC008000 _2bisacsh |
|
072 | 7 |
_aTJF _2thema |
|
072 | 7 |
_aUYS _2thema |
|
090 | _aQ325.73EBK | ||
100 | 1 |
_aMittag, Gabriel. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aDeep Learning Based Speech Quality Prediction _h[electronic resource] / _cby Gabriel Mittag. |
250 | _a1st ed. 2022. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2022. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aT-Labs Series in Telecommunication Services, _x2192-2829 |
|
505 | 0 | _a1. Introduction -- 2. Quality Assessment of Transmitted Speech -- 3. Neural Network Architectures for Speech Quality Prediction -- 4. Double-Ended Speech Quality Prediction Using Siamese Networks -- 5. Prediction of Speech Quality Dimensions With Multi-Task Learning -- 6. Bias-Aware Loss for Training From Multiple Datasets -- 7. NISQA – A Single-Ended Speech Quality Model -- 8. Conclusions -- A. Dataset Condition Tables -- B. Train and Validation Dataset Dimension Histograms -- References. | |
520 | _aThis book presents how to apply recent machine learning (deep learning) methods for the task of speech quality prediction. The author shows how recent advancements in machine learning can be leveraged for the task of speech quality prediction and provides an in-depth analysis of the suitability of different deep learning architectures for this task. The author then shows how the resulting model outperforms traditional speech quality models and provides additional information about the cause of a quality impairment through the prediction of the speech quality dimensions of noisiness, coloration, discontinuity, and loudness. | ||
650 | 0 | _aSignal processing. | |
650 | 0 | _aUser interfaces (Computer systems). | |
650 | 0 | _aHuman-computer interaction. | |
650 | 0 | _aNatural language processing (Computer science). | |
650 | 0 | _aAcoustical engineering. | |
650 | 1 | 4 | _aDigital and Analog Signal Processing. |
650 | 2 | 4 | _aUser Interfaces and Human Computer Interaction. |
650 | 2 | 4 | _aNatural Language Processing (NLP). |
650 | 2 | 4 | _aEngineering Acoustics. |
653 | 0 | _aDeep learning (Machine learning) | |
653 | 0 | _aSpeech processing systems | |
710 | 2 | _aSpringerLink (Online service) | |
830 | 0 |
_aT-Labs Series in Telecommunication Services, _x2192-2829 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1007/978-3-030-91479-0 _3Springer eBooks _zOnline access link to the resource |
942 |
_2lcc _cEBK |