000 05308nam a2200433 i 4500
999 _c200459199
_d77411
003 TR-AnTOB
005 20231229102030.0
007 ta
008 171111s2023 xxu e mmmm 00| 0 eng d
035 _a(TR-AnTOB)200459199
040 _aTR-AnTOB
_beng
_erda
_cTR-AnTOB
041 0 _atur
099 _aTEZ TOBB FBE BİL YL’23 TÜF
100 1 _aTüfekci, Zeynep
_eauthor
_9144603
245 1 0 _aDoğru ve yanlış al sat önerilerinin finansal teknik indikatörler ile ayırt edilmesi /
_cZeynep Tüfekci; thesis advisor Osman Abul.
246 1 1 _aDistinguishing true and false buy/sell triggers from financial technical indicators
264 1 _aAnkara :
_bTOBB ETÜ Fen Bilimleri Enstitüsü,
_c2023.
300 _axviii, 67 pages :
_billustrations ;
_c29 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
502 _aTez (Yüksek Lisans)--TOBB ETÜ Fen Bilimleri Enstitüsü Mayıs 2023
520 _aBu çalışmanın amacı, Doğru ve Yanlış Al / Sat önerilerini ayırt etmek için makine öğrenme yöntemi ile bir karar destek sistemi geliştirmektir. 30/70 Göreceli Güç İndeksi şeması gibi çeşitli öneri şemaları birçok yatırımcı tarafından etkin bir şekilde kullanılmaktadır. Bununla birlikte, bu öneri şemalarından üretilen sinyaller art arda ve çok sık olması dolayısıyla çoğu zaman şüpheli bulunmakta ve bu nedenle eyleme geçilememektedir. Bu çalışmada, fiyat verilerinden faydalanarak optimal bir yatırım modeli çıkarmak için dinamik programlama formülasyonu geliştirilmektedir. Bu optimal yatırım modeli, çeşitli finansal göstergelerle daha sonra çevrimiçi olarak başvurulabilecek ikili sınıflandırma modelini elde etmek için kullanılmaktadır. Dolayısıyla, önerilen sistem yatırımcılara birincil tavsiye veren indikatörlerden kalan belirsizliklerin ortadan kaldırılmasına yardımcı olur. Dinamik programlama formülasyonu, doğrusal zamanda verimli bir şekilde çalışmaktadır. Dinamik Programlama, birincil önericinin AL-SAT önerilerinin içinden daha iyi olanlarının belirlenip, etiketlenmesi aşamasında kullanılmıştır. Bu yaklaşım, deneysel olarak BIST-100, DOW-30 hisse senetleri ve döviz kurları üzerinde değerlendirilmiştir. Tahmin özellikleri olarak kullanılan teknik göstergeler; Göreceli Güç İndeksi, Trend Normalize edilmiş Göreceli Güç İndeksi, Yüzde Fiyat Osilatörü, Bollinger Bant Yüzdesi, Stokastik Osilatör, Fiyat Değişim Oranı ve Emtia Kanal İndeksi'dir. Bu çalışmada, Destek Vektör Makineleri, ikili sınıflandırma modeli olarak kullanılmaktadır. Bir günün sonunda oluşan göstergeleri öznitelik olarak kullanmanın yanı sıra, ardışık iki günün teknik göstergeleri öznitelik olarak kullanılarak daha başarılı sonuc elde edilmiştir. Bu çok zor ikili sınıflandırma görevinde tek günün verileri ile %70 üzerinde, ardışık iki günün verileri ile %73un üzerinde doğruluk elde edilmiştir.
520 _aThe objective of this study is to develop decision support system applying machine learning methods to distinguish True and False Buy/Sell recommendations. Various recommendation schemes, like 30/70 RSI (Relative Strength Index) scheme, are effectively used by many traders. However, the triggers produced by such recommendation schemes are found suspicious most of the time, and hence are non-actionable. In this study we develop a dynamic programming formulation to extract an optimal trade pattern from the price data sets. Such patterns are further augmented with several financial indicators to obtain binary classification model which is going to be consulted online. So, our system assists investors with removing uncertainties left from the primary recommender. We show that our dynamic programming formulation runs efficiently in linear time. Dynamic Programming is used to identify and label the better ones among the primary BUY and SELL recommendations. The approach is experimentally evaluated on BIST-100, DOW-30 stocks and currency pairs. The technical indicators used as predictor features are RSI, Trend Normalized RSI, Percentage Price Oscillator, Bollinger Band Percentage, Stochastic Oscillator, Rate of change (ROC), and Commodity Channel Index (CCI). We use Support Vector Machines as the binary classification algorithm. In addition to using the indicators formed at the end of each day as an attribute, better results were obtained by using the technical indicators of two consecutive days as attributes. Accuracy over %70 was achieved with data from a single day and over %73 with data from two consecutive days in this very difficult binary classification task.
653 _aFinansal teknik analiz
653 _aTeknik indikatörler
653 _aDinamik programlama
653 _aOptimal altdizgi
653 _aDestek vektör makinesi
653 _aFinancial technical analysis
653 _aTechnical indicators
653 _aDynamic programming
653 _aOptimal subsequence
653 _aSupport vector machine
700 1 _aAbul, Osman
_9128312
_eadvisor
710 _aTOBB Ekonomi ve Teknoloji Üniversitesi.
_bFen Bilimleri Enstitüsü
_977078
942 _cTEZ
_2z