000 | 02885cam a2200349 i 4500 | ||
---|---|---|---|
001 | 200460982 | ||
003 | TR-AnTOB | ||
005 | 20241115171855.0 | ||
007 | ta | ||
008 | 860815m19871973nyuad b 001 0 eng d | ||
020 | _a0486652416 | ||
040 |
_aDLC _beng _erda _cDLC _dFCU _dBAKER _dTBS _dBTCTA _dYDXCP _dZWZ _dUKMGB _dBDX _dGBVCP _dOCLCO _dOCLCF _dOCLCQ _dOCLCO _dOCLCQ _dBUF _dOCLCO _dGBS _dOCLCO _dGILDS _dOCLCO _dCPO _dOCLCO _dOCLCQ _dNAG _dOCLCO _dOCLCA _dALAUL _dOCLCO _dMXL _dOCLCO _dOCLCL _dTR-AnTOB |
||
041 | 0 | _aeng | |
050 | 0 | 0 |
_aQA297 _b.H3665 1987 |
090 |
_aQA297 _b.H3665 1987 TıpFaK |
||
100 | 1 |
_aHamming, R. W. _q(Richard Wesley), _d1915-1998 _eauthor _9145773 |
|
245 | 1 | 0 |
_aNumerical methods for scientists and engineers / _cR.W. Hamming. |
250 | _aSecond edition | ||
264 | 1 |
_aNew York : _bDover, _c1987. |
|
264 | 4 | _c©1973 | |
300 |
_aix, 721 pages : _billustrations, tables ; _c22 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
500 | _aReprint. Originally published: New York : McGraw-Hill, 1973 | ||
504 | _aBIBINDX | ||
505 | 0 | _aFundamentals and algorithms : An essay on numerical methods -- Numbers -- Function evaluation -- Real zeros -- Complex zeros -- Zeros of polynomials -- Linear equations and matrix inversion -- Random numbers -- The difference calculus -- Roundoff -- The summation calculus -- Infinite series -- Difference equations -- Polynomial approximation-classical theory : Polynomial interpolation -- Formulas using function values -- Error terms -- Formulas using derivatives -- Formulas using differences -- Formulas using the sample points as parameters -- Composite formulas -- Indefinite integrals-feedback -- Introduction to differential equations -- A general theory of predictor-corrector methods -- Special methods of integrating ordinary differential equations -- Least squares: theory -- Orthogonal functions -- Least squares: practice -- Chebyshev approximation: theory -- Chebyshev approximation: practice -- Rational function approximation -- Fourier approximation-modern theory : Fourier series: periodic functions -- Convergence of Fourier series -- The fast Fourier transform -- The Fourier integral: nonperiodic functions -- A second look at polynomial approximation-filters -- Integrals and differential equations -- Design of digital filters -- Quantization of signals -- Exponential approximation : Sums of exponentials -- The Laplace transformation -- Simulation and the method of zeros and poles -- Miscellaneous : Approximations to singularities -- Optimization -- Linear independence : Eigenvalues and eigenvectors of Hermitian matrices -- N+1 The art of computing for scientists and engineers | |
650 | 0 |
_aNumerical analysis _xData processing _92439 |
|
650 | 2 |
_aMathematical Computing _999304 |
|
942 |
_2lcc _cBK |
||
999 |
_c200460982 _d79194 |