000 02885cam a2200349 i 4500
001 200460982
003 TR-AnTOB
005 20241115171855.0
007 ta
008 860815m19871973nyuad b 001 0 eng d
020 _a0486652416
040 _aDLC
_beng
_erda
_cDLC
_dFCU
_dBAKER
_dTBS
_dBTCTA
_dYDXCP
_dZWZ
_dUKMGB
_dBDX
_dGBVCP
_dOCLCO
_dOCLCF
_dOCLCQ
_dOCLCO
_dOCLCQ
_dBUF
_dOCLCO
_dGBS
_dOCLCO
_dGILDS
_dOCLCO
_dCPO
_dOCLCO
_dOCLCQ
_dNAG
_dOCLCO
_dOCLCA
_dALAUL
_dOCLCO
_dMXL
_dOCLCO
_dOCLCL
_dTR-AnTOB
041 0 _aeng
050 0 0 _aQA297
_b.H3665 1987
090 _aQA297
_b.H3665 1987 TıpFaK
100 1 _aHamming, R. W.
_q(Richard Wesley),
_d1915-1998
_eauthor
_9145773
245 1 0 _aNumerical methods for scientists and engineers /
_cR.W. Hamming.
250 _aSecond edition
264 1 _aNew York :
_bDover,
_c1987.
264 4 _c©1973
300 _aix, 721 pages :
_billustrations, tables ;
_c22 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
500 _aReprint. Originally published: New York : McGraw-Hill, 1973
504 _aBIBINDX
505 0 _aFundamentals and algorithms : An essay on numerical methods -- Numbers -- Function evaluation -- Real zeros -- Complex zeros -- Zeros of polynomials -- Linear equations and matrix inversion -- Random numbers -- The difference calculus -- Roundoff -- The summation calculus -- Infinite series -- Difference equations -- Polynomial approximation-classical theory : Polynomial interpolation -- Formulas using function values -- Error terms -- Formulas using derivatives -- Formulas using differences -- Formulas using the sample points as parameters -- Composite formulas -- Indefinite integrals-feedback -- Introduction to differential equations -- A general theory of predictor-corrector methods -- Special methods of integrating ordinary differential equations -- Least squares: theory -- Orthogonal functions -- Least squares: practice -- Chebyshev approximation: theory -- Chebyshev approximation: practice -- Rational function approximation -- Fourier approximation-modern theory : Fourier series: periodic functions -- Convergence of Fourier series -- The fast Fourier transform -- The Fourier integral: nonperiodic functions -- A second look at polynomial approximation-filters -- Integrals and differential equations -- Design of digital filters -- Quantization of signals -- Exponential approximation : Sums of exponentials -- The Laplace transformation -- Simulation and the method of zeros and poles -- Miscellaneous : Approximations to singularities -- Optimization -- Linear independence : Eigenvalues and eigenvectors of Hermitian matrices -- N+1 The art of computing for scientists and engineers
650 0 _aNumerical analysis
_xData processing
_92439
650 2 _aMathematical Computing
_999304
942 _2lcc
_cBK
999 _c200460982
_d79194