000 06269cam a2200625 i 4500
001 902986846
003 OCoLC
005 20250128150758.0
006 m o d
007 cr |||||||||||
008 150206s2015 nju ob 001 0 eng
019 _a918624104
_a922313856
_a927508951
020 _a9781118799659 (ePub)
020 _a1118799658 (ePub)
020 _a9781118799680 (Adobe PDF)
020 _a1118799682 (Adobe PDF)
020 _z9781118799642 (cloth)
020 _a9781118799635
020 _a1118799631
020 _z111879964X
035 _a(OCoLC)902986846
_z(OCoLC)918624104
_z(OCoLC)922313856
_z(OCoLC)927508951
040 _aDLC
_beng
_erda
_cDLC
_dYDX
_dOCLCF
_dN$T
_dIDEBK
_dYDXCP
_dEBLCP
_dCOO
_dDG1
_dCDX
_dCCO
_dOCLCQ
042 _apcc
050 0 0 _aQA273
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
100 1 _aRohatgi, V. K.,
_d1939-
_0http://id.loc.gov/authorities/names/n80145202
245 1 3 _aAn introduction to probability theory and mathematical statistics /
_cVijay K. Rohatgi and A.K.Md. Ehsanes Saleh
250 _a3rd edition
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc.,
_c[2015]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aWiley series in probability and statistics
504 _aIncludes bibliographical references and index
505 0 _aTitle Page; Copyright Page; CONTENTS; PREFACE TO THE THIRD EDITION; PREFACE TO THE SECOND EDITION; PREFACE TO THE FIRST EDITION; ACKNOWLEDGMENTS; ENUMERATION OF THEOREMS AND REFERENCES; CHAPTER 1 PROBABILITY; 1.1 INTRODUCTION; 1.2 SAMPLE SPACE; 1.3 PROBABILITY AXIOMS; 1.4 COMBINATORICS: PROBABILITY ON FINITE SAMPLE SPACES; 1.5 CONDITIONAL PROBABILITY AND BAYES THEOREM; 1.6 INDEPENDENCE OF EVENTS; CHAPTER 2RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS; 2.1 INTRODUCTION; 2.2 RANDOM VARIABLES; 2.3 PROBABILITY DISTRIBUTION OF A RANDOM VARIABLE; 2.4 DISCRETE AND CONTINUOUS RANDOM VARIABLES
505 8 _a2.5 FUNCTIONS OF A RANDOM VARIABLECHAPTER 3MOMENTS AND GENERATING FUNCTIONS; 3.1 INTRODUCTION; 3.2 MOMENTS OF A DISTRIBUTION FUNCTION; 3.3 GENERATING FUNCTIONS; 3.4 SOME MOMENT INEQUALITIES; CHAPTER 4MULTIPLE RANDOM VARIABLES; 4.1 INTRODUCTION; 4.2 MULTIPLE RANDOM VARIABLES; 4.3 INDEPENDENT RANDOM VARIABLES; 4.4 FUNCTIONS OF SEVERAL RANDOM VARIABLES; 4.5 COVARIANCE, CORRELATION AND MOMENTS; 4.6 CONDITIONAL EXPECTATION; 4.7 ORDER STATISTICS AND THEIR DISTRIBUTIONS; CHAPTER 5SOME SPECIAL DISTRIBUTIONS; 5.1 INTRODUCTION; 5.2 SOME DISCRETE DISTRIBUTIONS; 5.2.1 Degenerate Distribution
505 8 _a5.2.2 Two-Point Distribution5.2.3 Uniform Distribution on n Points; 5.2.4 Binomial Distribution; 5.2.5 Negative Binomial Distribution (Pascal or Waiting Time Distribution); 5.2.6 Hypergeometric Distribution; 5.2.7 Negative Hypergeometric Distribution; 5.2.8 Poisson Distribution; 5.2.9 Multinomial Distribution; 5.2.10 Multivariate Hypergeometric Distribution; 5.2.11 Multivariate Negative Binomial Distribution; 5.3 SOME CONTINUOUS DISTRIBUTIONS; 5.3.1 Uniform Distribution (Rectangular Distribution); 5.3.2 Gamma Distribution; 5.3.3 Beta Distribution; 5.3.4 Cauchy Distribution
505 8 _a5.3.5 Normal Distribution (the Gaussian Law)5.3.6 Some Other Continuous Distributions; 5.4 BIVARIATE AND MULTIVARIATE NORMAL DISTRIBUTIONS; 5.5 EXPONENTIAL FAMILY OF DISTRIBUTIONS; CHAPTER 6SAMPLE STATISTICS AND THEIR DISTRIBUTIONS; 6.1 INTRODUCTION; 6.2 RANDOM SAMPLING; 6.3 SAMPLE CHARACTERISTICS AND THEIR DISTRIBUTIONS; 6.4 CHI-SQUARE, t-, AND F-DISTRIBUTIONS: EXACT SAMPLINGDISTRIBUTIONS; 6.5 DISTRIBUTION OF (X,S2) IN SAMPLING FROM A NORMALPOPULATION; 6.6 SAMPLING FROM A BIVARIATE NORMAL DISTRIBUTION; CHAPTER 7BASIC ASYMPTOTICS: LARGE SAMPLE THEORY; 7.1 INTRODUCTION
505 8 _a7.2 modes of convergence7.3 weak law of large numbers; 7.4 strong law of large numbers; 7.5 limiting moment generating functions; 7.6 central limit theorem; 7.7 large sample theory; chapter 8parametric point estimation; 8.1 introduction; 8.2 problem of point estimation; 8.3 sufficiency, completeness and ancillarity; 8.4 unbiased estimation; 8.5 unbiased estimation (continued): a lower bound forthe variance of an estimator; 8.6 substitution principle (method of moments); 8.7 maximum likelihood estimators; 8.8 bayes and minimax estimation; 8.9 principle of equivariance
506 _aAvailable to OhioLINK libraries
520 _aA well-balanced introduction to probability theory and mathematical statistics Featuring a comprehensive update, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided into three parts, the Third Edition begins by presenting the fundamentals and foundations of probability. The second part addresses statistical inference, and the remaining chapters focus on special topics. Featuring a substantial revision to include recent developments, An Introduction to Probability and Statistics, Third Edition also
650 0 _aProbabilities.
_0http://id.loc.gov/authorities/subjects/sh85107090
_9818
650 0 _aMathematical statistics.
_0http://id.loc.gov/authorities/subjects/sh85082133
_9496
655 4 _aElectronic books
_92032
700 1 _aSaleh, A. K. Md. Ehsanes.
_0http://id.loc.gov/authorities/names/n83028718
710 2 _aOhio Library and Information Network.
_0http://id.loc.gov/authorities/names/no95058981
776 0 8 _iPrint version:
_aRohatgi, V. K., 1939-
_tIntroduction to probability theory and mathematical statistics
_b3rd edition.
_dHoboken, New Jersey : John Wiley & Sons, Inc., [2015]
_z9781118799642
_w(DLC) 2015004848
830 0 _aWiley series in probability and statistics.
_0http://id.loc.gov/authorities/names/n98048834
856 4 0 _3OhioLINK
_zConnect to resource
_uhttps://rave.ohiolink.edu/ebooks/ebc2/9781118799635
856 4 0 _3Wiley Online Library
_zConnect to resource
_uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781118799635
856 4 0 _3Wiley Online Library
_zConnect to resource (off-campus)
_uhttps://go.ohiolink.edu/goto?url=https://onlinelibrary.wiley.com/doi/book/10.1002/9781118799635
999 _c200463722
_d81934