000 | 02998 a2200349 4500 | ||
---|---|---|---|
001 | 54215 | ||
999 |
_c54215 _d14303 |
||
003 | TR-AnTOB | ||
005 | 20200511112917.0 | ||
008 | 090914m19932004nyua b 00100 eng | ||
010 | _a96224167 | ||
020 | _a0387979522 (acid-free paper) | ||
040 |
_aDLC _cDLC _dDLC |
||
041 | _aeng | ||
050 |
_aQA374 _b.R42 2004 |
||
090 | _aQA374 .R42 2004 | ||
100 |
_aRenardy, Michael _929205 |
||
245 | 3 |
_aAn introduction to partial differential equations / _cMichael Renardy, Robert C. Rogers. |
|
250 | _a2nd ed. | ||
264 | 1 |
_aNew York : _bSpringer, _c2004. |
|
300 |
_axiii, 428 p. : _bill. ; _c25 cm. |
||
490 | 0 |
_aTexts in applied mathematics ; _v13 |
|
504 | _aIncludes bibliographical references and index. | ||
505 |
_a1.Introduction -- _g1.1.Basic Mathematical Questions -- _g1.2.Elementary Partial Differential Equations -- _g2.Characteristics -- _g2.1.Classification and Characteristics -- _g2.2.The Cauchy-Kovalevskaya Theorem -- _g2.3.Holmgren's Uniqueness Theorem -- _g3.Conservation Laws and Shocks -- _g3.1.Systems in One Space Dimension -- _g3.2.Basic Definitions and Hypotheses -- _g3.3.Blowup of Smooth Solutions -- _g3.4.Weak Solutions -- _g3.5.Riemann Problems -- _g3.6.Other Selection Criteria -- _g4.Maximum Principles -- _g4.1.Maximum Principles of Elliptic Problems -- _g4.2.An Existence Proof for the Dirichlet Problem -- _g4.3.Radial Symmetry -- _g4.4.Maximum Principles for Parabolic Equations -- _g5.Distributions -- _g5.1.Test Functions and Distributions -- _g5.2.Derivatives and Integrals -- _g5.3.Convolutions and Fundamental Solutions -- _g5.4.The Fourier Transform -- _g5.5.Green's Functions -- _g6.Function Spaces -- _g6.1.Banach Spaces and Hilbert Spaces -- _g6.2.Bases in Hilbert Spaces -- _g6.3.Duality and Weak Convergence -- _g6.4.Sobolev Spaces -- _g7.Operator Theory -- _g7.1.Basic Definitions and Examples -- _g7.2.The Open Mapping Theorem -- _g7.3.Spectrum and Resolvent -- _g7.4.Symmetry and Self-adjointness -- _g7.5.Compact Operators -- _g7.6.Sturm-Liouville Boundary-Value Problems -- _g7.7.The Fredholm Index -- _g8.Linear Elliptic Equations -- _g8.1.Definitions -- _g8.2.Existence and Uniqueness of the Solutions of the Dirichlet Problem -- _g8.3.Eigenfunction Expansions -- _g8.4.General Linear Elliptic Problems -- _g8.5.Interior Regularity -- _g8.6.Boundary Regularity -- _g9.Nonlinear Elliptic Equations -- _g9.1.Perturbation Results -- _g9.2.Nonlinear Variational Problems -- _g9.3.Nonlinear Operator Theory Methods -- _g10.Energy Methods for Evolution Problems -- _g10.1.Parabolic Equations -- _g10.2.Hyperbolic Evolution Problems -- _g11.Semigroup Methods -- _g11.1.Semigroups and Infinitesimal Generators -- _g11.2.The Hille-Yosida Theorem -- _g11.3.Applications to PDEs -- _g11.4.Analytic Semigroups. |
||
650 |
_aDiferansiyel denklemler, Kısmi _925863 |
||
650 |
_aDifferential equations, Partial _91008 |
||
700 |
_aRogers, Robert C. _929206 |
||
901 | _a0031551 | ||
902 | _aMerkez Kütüphane. | ||
945 | _aöö | ||
942 | _cBK |