000 01771 a2200373 4500
001 72373
999 _c72373
_d20685
003 TR-AnTOB
005 20200607104530.0
008 081105s2005 ne a b 001 0 eng
010 _a2005043385
020 _a0120884070
020 _a9780120884070
040 _aDLC
_cDLC
_dBAKER
_dIXA
_dEGM
_dMUQ
_dNLGGC
_dPL
_dUBA
_dYDXCP
_dOCLCQ
_dBTCTA
_dUPP
_dNMT
041 _aeng
042 _apcc
049 _aNMTA
050 _aQA76.9.D343
_bW58 2005
090 _aQA76.9.D343 W58 2005
100 _aWitten, I. H.,
_q(Ian H.)
_948650
245 0 _aData mining :
_bpractical machine learning tools and techniques /
_cIan H. Witten, Eibe Frank.
250 _a2nd ed.
264 1 _aAmsterdam ;
_aBoston, MA :
_bMorgan Kaufman,
_c2005.
300 _axxxi, 525 p. :
_bill. ;
_c24 cm.
490 0 _aMorgan Kaufmann series in data management systems.
504 _aIncludes bibliographical references (p. 485-503) and index.
505 0 _aPt. I. Machine learning tools and techniques. What's it all about? -- Input : concepts, instances, and attributes -- Output : knowledge representation -- Algorithms : the basic methods -- Credibility : evaluating what's been learned -- Implementations : real machine learning schemes -- Transformations : engineering the input and output -- Moving on : extensions and applications -- Pt. II. The Weka machine learning workbench. Introduction to Weka -- The Explorer -- The Knowledge Flow interface -- The Experimenter -- The command-line interface -- Embedded machine learning -- Writing new learning schemes.
650 7 _aVeri madenciliği
_2etuturkob
_94839
650 0 _aData mining
_96146
700 _aFrank, Eibe
_948651
902 _a0026475, 0026476
903 _aMerkez Kütüphane
945 _aMC, CS
942 _cBK