000 | 01771 a2200373 4500 | ||
---|---|---|---|
001 | 72373 | ||
999 |
_c72373 _d20685 |
||
003 | TR-AnTOB | ||
005 | 20200607104530.0 | ||
008 | 081105s2005 ne a b 001 0 eng | ||
010 | _a2005043385 | ||
020 | _a0120884070 | ||
020 | _a9780120884070 | ||
040 |
_aDLC _cDLC _dBAKER _dIXA _dEGM _dMUQ _dNLGGC _dPL _dUBA _dYDXCP _dOCLCQ _dBTCTA _dUPP _dNMT |
||
041 | _aeng | ||
042 | _apcc | ||
049 | _aNMTA | ||
050 |
_aQA76.9.D343 _bW58 2005 |
||
090 | _aQA76.9.D343 W58 2005 | ||
100 |
_aWitten, I. H., _q(Ian H.) _948650 |
||
245 | 0 |
_aData mining : _bpractical machine learning tools and techniques / _cIan H. Witten, Eibe Frank. |
|
250 | _a2nd ed. | ||
264 | 1 |
_aAmsterdam ; _aBoston, MA : _bMorgan Kaufman, _c2005. |
|
300 |
_axxxi, 525 p. : _bill. ; _c24 cm. |
||
490 | 0 | _aMorgan Kaufmann series in data management systems. | |
504 | _aIncludes bibliographical references (p. 485-503) and index. | ||
505 | 0 | _aPt. I. Machine learning tools and techniques. What's it all about? -- Input : concepts, instances, and attributes -- Output : knowledge representation -- Algorithms : the basic methods -- Credibility : evaluating what's been learned -- Implementations : real machine learning schemes -- Transformations : engineering the input and output -- Moving on : extensions and applications -- Pt. II. The Weka machine learning workbench. Introduction to Weka -- The Explorer -- The Knowledge Flow interface -- The Experimenter -- The command-line interface -- Embedded machine learning -- Writing new learning schemes. | |
650 | 7 |
_aVeri madenciliği _2etuturkob _94839 |
|
650 | 0 |
_aData mining _96146 |
|
700 |
_aFrank, Eibe _948651 |
||
902 | _a0026475, 0026476 | ||
903 | _aMerkez Kütüphane | ||
945 | _aMC, CS | ||
942 | _cBK |