000 | 02929 a2200397 4500 | ||
---|---|---|---|
999 |
_c76444 _d24368 |
||
001 | 76444 | ||
003 | TR-AnTOB | ||
005 | 20201023143656.0 | ||
008 | 001102s2001 nyua b 001 0 eng | ||
010 | _a00053772 | ||
020 | _a0387951547 (pbk.) | ||
040 |
_aDLC _cDLC _dDLC |
||
041 | _aeng | ||
050 | 0 |
_aQA274.73 _b.S65 2001 |
|
090 | _aQA274.73 .S65 2001 | ||
100 |
_aSpitzer, Frank, _d1926- _959697 |
||
245 | 0 |
_aPrinciples of random walk / _cFrank Spitzer. |
|
250 | _a2nd ed. | ||
264 | 1 |
_aNew York : _bSpringer, _c2001. |
|
300 |
_axii, 408 p. : _bill. ; _c24 cm. |
||
336 |
_2rdacontent _atext _btxt |
||
337 |
_2rdamedia _aunmediated _bn |
||
338 |
_2rdacarrier _avolume _bnc |
||
490 | 0 |
_aGraduate Texts in Mathematics ; _v34 |
|
504 | _aIncludes bibliographical references (p. 403-408) and index. | ||
505 | 8 | _aMachine generated contents note: CHAPTER I. THE CLASSIFICATION OF RANDOM WALK -- 1. Introduction -- 2. Periodicity and recurrence behavior -- 3. Some measure theory -- 4. The range of a random walk -- 5. The strong ratio theorem -- Problems CHAPTER II. HARMONIC ANALYSIS -- 6. Characteristic functions and moments -- 7. Periodicity -- 8. Recurrence criteria and examples -- 9. The renewal theorem -- Problems CHAPTER III. Two-DIMENSIONAL RECURRENT RANDOM WALK -- 10. Generalities -- 11. The hitting probabilities of a finite set -- 12. The potential kernel A(x,y) -- 13. Some potential theory -- 14. The Green function of a finite set -- 15. Simple random walk in the plane -- 16. The time dependent behavior -- Problems CHAPTER IV. RANDOM WALK ON A HALF-LINE -- 17. The hitting probability of the right half-line -- 18. Random walk with finite mean -- 19. The Green function and the gambler's ruin problem -- 20. Fluctuations and the arc-sine law -- Problems -- CHAPTER V. RANDOM WALK ON A INTERVAL -- 21. Simple random walk -- 22. The absorption problem with mean zero, finite variance -- 23. The Green function for the absorption problem -- Problems CHAPTER VI. TRANSIENT RANDOM WALK -- 24. The Green function G(x,y) -- 25. Hitting probabilities -- 26. Random walk in three-space with mean zero and finite -- second moments -- 27. Applications to analysis -- Problems CHAPTER VII. RECURRENT RANDOM WALK -- 28. The existence of the one-dimensional potential kernel -- 29. The asymptotic behavior of the potential kernel -- 30. Hitting probabilities and the Green function -- 31. The uniqueness of the recurrent potential kernel -- 32. The hitting time of a single point -- Problems -- BIBLIOGRAPHY SUPPLEMENTARY BIBLIOGRAPHY INDEX. | |
650 | 0 |
_aRandom walks (Mathematics) _959698 |
|
650 | 7 |
_aRastgele hareket etme (Matematik) _2etuturkob _959699 |
|
856 | 4 |
_uhttp://www.loc.gov/catdir/toc/fy02/00053772.html _3Table of Contents |
|
902 | _a31438 | ||
903 | _aMerkez Kütüphanesi | ||
942 |
_cBK _2lcc |
||
945 | _aH.A,CS |