000 02929 a2200397 4500
999 _c76444
_d24368
001 76444
003 TR-AnTOB
005 20201023143656.0
008 001102s2001 nyua b 001 0 eng
010 _a00053772
020 _a0387951547 (pbk.)
040 _aDLC
_cDLC
_dDLC
041 _aeng
050 0 _aQA274.73
_b.S65 2001
090 _aQA274.73 .S65 2001
100 _aSpitzer, Frank,
_d1926-
_959697
245 0 _aPrinciples of random walk /
_cFrank Spitzer.
250 _a2nd ed.
264 1 _aNew York :
_bSpringer,
_c2001.
300 _axii, 408 p. :
_bill. ;
_c24 cm.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
490 0 _aGraduate Texts in Mathematics ;
_v34
504 _aIncludes bibliographical references (p. 403-408) and index.
505 8 _aMachine generated contents note: CHAPTER I. THE CLASSIFICATION OF RANDOM WALK -- 1. Introduction -- 2. Periodicity and recurrence behavior -- 3. Some measure theory -- 4. The range of a random walk -- 5. The strong ratio theorem -- Problems CHAPTER II. HARMONIC ANALYSIS -- 6. Characteristic functions and moments -- 7. Periodicity -- 8. Recurrence criteria and examples -- 9. The renewal theorem -- Problems CHAPTER III. Two-DIMENSIONAL RECURRENT RANDOM WALK -- 10. Generalities -- 11. The hitting probabilities of a finite set -- 12. The potential kernel A(x,y) -- 13. Some potential theory -- 14. The Green function of a finite set -- 15. Simple random walk in the plane -- 16. The time dependent behavior -- Problems CHAPTER IV. RANDOM WALK ON A HALF-LINE -- 17. The hitting probability of the right half-line -- 18. Random walk with finite mean -- 19. The Green function and the gambler's ruin problem -- 20. Fluctuations and the arc-sine law -- Problems -- CHAPTER V. RANDOM WALK ON A INTERVAL -- 21. Simple random walk -- 22. The absorption problem with mean zero, finite variance -- 23. The Green function for the absorption problem -- Problems CHAPTER VI. TRANSIENT RANDOM WALK -- 24. The Green function G(x,y) -- 25. Hitting probabilities -- 26. Random walk in three-space with mean zero and finite -- second moments -- 27. Applications to analysis -- Problems CHAPTER VII. RECURRENT RANDOM WALK -- 28. The existence of the one-dimensional potential kernel -- 29. The asymptotic behavior of the potential kernel -- 30. Hitting probabilities and the Green function -- 31. The uniqueness of the recurrent potential kernel -- 32. The hitting time of a single point -- Problems -- BIBLIOGRAPHY SUPPLEMENTARY BIBLIOGRAPHY INDEX.
650 0 _aRandom walks (Mathematics)
_959698
650 7 _aRastgele hareket etme (Matematik)
_2etuturkob
_959699
856 4 _uhttp://www.loc.gov/catdir/toc/fy02/00053772.html
_3Table of Contents
902 _a31438
903 _aMerkez Kütüphanesi
942 _cBK
_2lcc
945 _aH.A,CS